

ZERA

Instructions for use

MT30

Portable reference meter

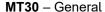
Keep for reference

9. February 2023

Table of contents

1	General	4
	Declaration of conformity	5
	About these Instructions for use	6
2	Safety	7
	Intended use	8
	Essential safety regulations	9
	Requirements for personnel and personal protective equipment	10
3	Design and function of the reference meter	11
	Contents of the case	12
	The MT30 reference meter	14
	Controls and indicators	15
	Connection panel	17
	Technical data	18
4	Design and operation of the user interface	20
	The software interface	21
	The status bar	22
	The function bars	23
5	Taking test measurements	24
	Switching on the reference meter and preparing for testing	25
	General procedure for a test measurement	27
	Attaching the scanning head to the meter Entering the meter constant	30 31
	Error Measurement using a scanning head	32
	Error Measurement without scanning head	34
	Performing a W-register test (energy register)	37
	Performing a P-register test (power register)	38
6	Connection diagrams	39
	Single-phase 2-wire meter connected directly	40
	Three-phase 3-wire meter connected directly	42
	Three-phase 3-wire meter with current and voltage transformer	44
	Three-phase 4-wire meter connected directly	46
	Three-phase 4-wire meter with current transformer	48
	Three-phase 4-wire meter with current and voltage transformer	50
7	The horizontal function bar of the reference meter in detail	52
	The functions in outline	53
	The measurement ranges	55
	The measuring modes	56
8	The functions of the reference meter	57
	Actual values	58
	Vector	61
	Curve Harmonics	64 65
	Error measurement	67
	W-register test (energy register)	69
	P-register test (power register)	70
	Selective – optional	71
	Saved Data	72

MT30


	Source (ext.) - optional	74
	Dosage (ext.) – optional	77
	Settings	79
	Settings (2)	81
	Ratio	82
	The Save Data subfunction	84
9	Calculation of derived values	86
	Calculating the voltage	87
	Calculating the current	88
	Power for the 4-wire measurement	89
	Power for the three-phase 3-wire measurement	90
	Phase angles	91
	Accuracy test	92
10	Troubleshooting and routine maintenance	93
	Cleaning and routine maintenance	94
	Battery use	95
	Potential problems arising from the hardware	96
	Potential problems arising from use	97
	Warranty, Service, Disposal	99
	Index	100

MT30

1	General
-	

Contents	In this Chapter	Page
	Declaration of conformity	5
	About these Instructions for use	6

Declaration of conformity

Manufacturer ZERA GmbH

Humboldtstraße 2a D-53639 Königswinter

Validity of Declaration of

conformity

The company ZERA GmbH hereby declares under sole responsibility that the product described below is in conformity with the fundamental requirements of the Directives listed below:

· Product description: Portable reference meter

• Model: Moving Test MT30

Declaration of conformity with Directives

The manufacturer declares that the reference meter described above is in conformity with the following directives:

• 2014/30/EU (Electromagnetic Compatibility)

• 2014/35/EU (Low Voltage Directive)

Standards compliance

The reference meter described above complies with the requirements in the following European standards:

DIN EN 61010-1

• DIN EN 61000-4-2

• DIN EN 61000-4-3

• DIN EN 61000-4-4

• DIN EN 61000-4-5

• DIN EN 61000-4-6

• DIN EN 61000-4-8

• DIN EN 61000-4-11

• DIN EN 55011

About these Instructions for use

Issued by ZERA GmbH

Humboldtstraße 2a D-53639 Königswinter

Tel +49 2244 9277-0 Email info@zera.de Web www.zera.de

Validity and purpose

These Instructions for use apply to the MT30 reference meter, firmware version

6.25.

The Instructions for use contain the information needed for safe and correct

working practices when testing installations and meters.

Target readership

The Instructions for use are intended solely for trained electricians who are additionally qualified to work with live voltages.

Conventions used for hazard notices

The hazard notices are categorized according to the following hazard levels:

Hazard level	Consequence	Likelihood
A DANGER	Death / serious injury (irreversible)	Immediate hazard
MARNING	Death / serious injury (irreversible)	Potential hazard
A CAUTION	Minor injury (reversible)	Potential hazard
NOTICE	Damage to property	Potential hazard

MT30

2 Safety

Summary	The Safety chapter contains information that is essential to read and fore using the reference meter.	follow be-
Contents	In this Chapter	Page
	Intended use	8
	Essential safety regulations	g
	Requirements for personnel and personal protective equipment	10

Intended use

Intended use

The MT30 is a portable reference meter. It is used for on-site testing under mains load of various types of electricity meter

- · Ferraris meters
- · Electronic meters

The reference meter can be used for:

- Testing meter installations in a single-phase two-wire, three-phase three-wire or three-phase four-wire system
- · Checking the meter's energy register and power register
- Measuring active, reactive and apparent power
- 4-quandrant measurements
- Measuring frequency, phase angle and power factor
- Analysing voltage and current harmonics up to the 40th harmonic
- Measuring the total harmonic distortion
- Vectorial view of the measured values
- · Oscilloscope function for waveform sampling
- · Rotating field indication

The reference meter must be used within the limits specified in the Technical Data

Restrictions on use

The reference meter must not be used for measurements that lie outside the ranges specified in the Technical Data.

Essential safety regulations

Persons who should read these regulations

These regulations are intended for any person who works with the reference meter.

Purpose of these regulations

These regulations are intended to ensure that any person working with the reference meter has a thorough understanding of the associated hazards and safety precautions and heeds the safety instructions given in the Instructions for use. You risk injury and even death if you do not follow these instructions, and you may also cause damage to property.

Using the Instructions for use

Follow the instructions below:

- Read carefully the Safety chapter and those chapters relating to your activity.
 You must have understood the information contained in these chapters.
- · Always keep the Instructions for use available for reference.
- · Pass on the Instructions for use with the reference meter.

Using the instrument safely

Follow the instructions below:

- Only those persons who meet the requirements stipulated in these Instructions for use are allowed to use the reference meter.
- Employ the reference meter solely for the intended use. Never use the reference meter under any circumstances for other purposes, even if these may seem perfectly normal.
- Take all the safety precautions specified in these Instructions for use. Use in particular the personal protective equipment specified
- Always ensure your hands and footwear are dry and the floor is dry before using the instrument.
- Do not make any modifications to the reference meter. In particular, you are not allowed to modify or disable any safety devices.

Ensuring the reference meter is in good working order

Follow the rules below:

- Only use the reference meter if the case and all the accessories are in perfect condition.
- Check all cables for breaks or for cracks in the insulation before use. Immediately replace any cables showing signs of damage.
- · Make sure that
 - you always use insulated safety voltage pins/cables for more than 40 V.
 - you never use unprotected metal pins or banana plugs.
- Make sure that all connections are plugged in properly. Loose connections can cause arcing, overheating or short-circuits and may damage the equipment and/or associated devices.

Requirements for the environment in which the equipment is used

The *Technical Data* on page 18 contains the specification for the equipment environment.

Restrictions on use:

- The equipment must be operated solely in enclosed spaces and/or with suitable protection against rain and water spray/splash and excessive heat, e. g. from direct sunlight.
- · The environment of use must be dry.

9. February 2023

Requirements for personnel and personal protective equipment

Requirements for personnel

Measurements using the reference meter must be carried out solely by an electrician who is additionally trained and qualified in working with live voltages.

Who is an electrician?

An electrician is someone who, based on his/her technical training, knowledge and experience and familiarity with the relevant regulations, can assess the work assigned to him/her and recognize potential hazards.

Personal protective equipment

Personal protective equipment is required when working with live voltages. National regulations relating to safety at work specify the requirements for personal protective equipment.

MT30

3

Design and function of the reference meter

Summary	This chapter introduces you to the reference meter.

Contents	In this Chapter	Page
	Contents of the case	12
	The MT30 reference meter	14
	Controls and indicators	15
	Connection panel	17
	Technical data	18

9. February 2023

Contents of the case

Details The reference meter is always supplied in a special case. The contents of the

case will vary depending on the purchase order.

Photo of the case The reference meter inside the aluminium case alongside typical accessories

Delivery note

A delivery note is included with each case. The delivery note tells you what the case contained when shipped. Check against the delivery note that the case contains all the parts listed.

MT30 – Design and function of the reference meter

Basic kit

Elements of the basic kit

No.	Name
1	Reference meter
2	AC current clamps
3	Scanning head (various types available, with separate Instructions for use)
4	Scanning-head mount
5	Power supply unit (mains adapter)
6	Four coloured laboratory leads

A calibration certificate is always included with every reference meter.

The MT30 reference meter

The MT30

The MT30 is a reference meter. The reference meter is used to check meter installations (single-phase two-wire, three-phase three-wire and three-phase four-wire systems).

Overview of the reference meter

Design of the reference meter

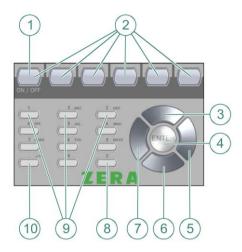
No.	Details
1	Connection panel
2	Operating panel
3	Ventilation
4	Type plate
5	Belt fastening (4x)
6	Reset button
7	Battery compartment

9. February 2023

MT30 – Design and function of the reference meter

Controls and indicators

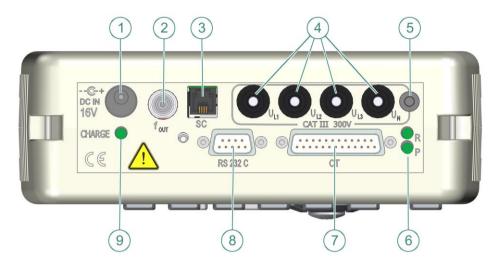
Front view of the reference meter


Controls and indicators

No.	Name	Function
1	Screen	Displays all the functions and measured values (6.4" monochrome backlit LCD screen)
2	Function keys	Used to select the functions displayed on the screen
3	Keypad and cursor control	Alphanumeric input Cursor control Input confirmation

MT30 - Design and function of the reference meter

The control panel


The control buttons

No.	Name	Function
1	ON/OFF button	Switch reference meter on or off Used to color; the functions displayed on the cerean
	Function key	Used to select the functions displayed on the screen
2	Function keys	Used to select the functions displayed on the screen
3	Cursor up	Move cursor upwards
4	Enter	Confirm input
5	Cursor right	Move cursor to the right
6	Cursor down	Move cursor downwards
7	Cursor left	Move cursor to the left
8	Clear	Delete the character currently indicated by the cursor
9	Numeric keypad	Used for entering numbers and letters (press repeatedly)
10	Special characters	Used for entering special characters ., +, -, ?, !

Connection panel

Connection panel

Purpose of the connectors and LEDs

No.	Name	Details	
1	DC IN 16V	Connection for mains adapter • Power supply for the reference meter • Charges the built-in battery	
2	f OUT	BNC connector for connecting to a reference meter. The frequency of the signal is proportional to the power.	
3	SC	"RJ10" 4P4C connector for scanning head for pulse acquisition	
4	UL1	Voltage connection for line phase 1, max. 300 V CAT III	
	UL2	Voltage connection for line phase 2, max. 300 V CAT III	
	UL3	Voltage connection for line phase 3, max. 300 V CAT III	
	UN	Voltage connection for neutral, maximum 300 V CAT III	
5	-	Indexing hole for the quick-connect voltage connector to prevent wrong polarity.	
6 LED P (Power) Power status LED		Power status LED	
	LED R (Ready)	Ready status LED	
7	СТ	25-pin connector for:AC current clampsTemperature sensor	
8	RS-232	RS-232 interface D-Sub DE-9 Port for connecting a PC Port for connecting an external source Port for connecting a serial printer	
9	LED CHARGE	Status LED showing level of battery charge	

Charge status LED

LED	Details
Permanently on	Instrument being powered from the mains adapter Internal battery is fully charged
Flashing slowly	Instrument being powered from the mains adapter Internal battery is being charged
Flashing rapidly	Instrument being powered from the mains adapter Internal battery is faulty; must be replaced immediately
Off	Instrument under battery power

Technical data

Technical data		
General	Date	Value
	Power supply	16 V DC ±3 %, 2.5 A
	Power consumption	~ 20 VA
	Rechargeable battery operation : operating time	~ 1 h
	Rechargeable battery operation : recharging time At cells with different charge up to max.30 h	~ 3 h
	Temperature range, operation	−15 +50 °C
	Temperature range, storage	−15 +65 °C
	Relative humidity (not condensing)	max. 95 %
	Dimensions (L×W×H)	190 × 190 × 80 mm
	Weight	~ 1.6 kg
	Max. height above sea level	2000 m
	External power supply unit	Type: Mascot 9921 (90 264 V / 47 63 Hz / max 0.9 A)
Safety	Date	Value
	IP class according to DIN EN 60529	IP40
	Declaration of conformity	CE conform
	Overvoltage category voltage measurement Option CAT IV 300V	CAT III 300 V
	Overvoltage category, current measurement (MT3430)	CAT III 30 V
Reference meter	Date	Value
	Measuring modes Depending on the selected option	1-ph 2 WA / WR / WAP 3-ph 3 WA / WR / WRCA / WRCB / WAP 3-ph 4 WA / WAb / WR / WRb / WRC / WAP / WAPb
	Fundamental frequency	15 70 Hz
	Bandwidth	3000 Hz
	Sampling	16 bit 504 samples/period
	Accuracy class for measuring of power / energy	0.2
	Rotary field indication	yes
	Angle measurement accuracy From 30 V 300 V (45 65 Hz) From 500 mA 120 A (45 65 Hz)	< 0.1°
	Frequency measurement deviation	± 0.01 Hz

Voltage Measurement

Date	Value
Number of voltage channels	3
Voltage measurement	10 300 V
Voltage range(s)	250 V
Usage of ranges	10 120 % @ 1570 Hz 2 120 % @ 50 Hz

MT30 – Design and function of the reference meter

Date	Value
Input impedance of voltage channels (@ range)	264.5 kΩ @ 250 V
Voltage measurement accuracy From 30 V 300 V (45 65 Hz) Related to the read value at optimum range selection	< 0.05 % @ 30 300 V
Voltage measurement temperature drift From 30 V 300 V (45 65 Hz)	< 15 × 10 ⁻⁶ / K
Voltage measurement stability Stability over 1 hour (every minute one measurement with ti = 60 s)	< 50 × 10 ⁻⁶
Voltage measurement long term stability Stability over 1 year (every month one measurement over one hour) From 30 V 300 V (45 65 Hz)	< 100 × 10 ⁻⁶ / Year
Voltage measurement linearity	< 100 × 10 ⁻⁶

Current measurement using AC current clamps MT3430

Date	Value
Current measurement	5 mA 120 A
Current range(s)	100 A, 50 A, 10 A, 5 A, 1 A, 500 mA, 100 mA, 50 mA
Usage of ranges	10 % 120 %
Current measurement accuracy Related to the read value at optimum range selection	< 0.15 % @ 500 mA 120 A < 0.3 % @ 100 mA 500 mA
Current measurement temperature drift From 500 mA 120 A (45 65 Hz)	< 50 × 10 ⁻⁶ /K
Current measurement stability Stability over 1 hour (every minute one measurement with ti = 60 s) From 500 mA 120 A (45 65 Hz)	< 150 × 10 ⁻⁶
Current measurement long term stability Stability over 1 year (every month one measurement over one hour) From 500 mA 120 A (45 65 Hz)	< 600 × 10 ⁻⁶ / Year
Clamp for cables up to Ø	12 mm

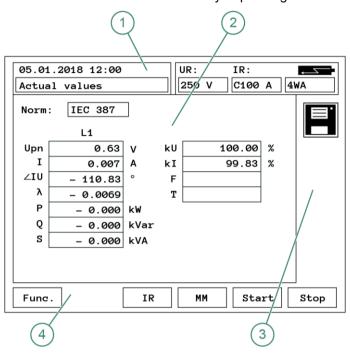
Power measurement (@MT3430)

Date	Value
Power/energy measurement accuracy From 30 V 300 V (45 65 Hz) From 500 mA 120 A (45 65 Hz) Related to the read value at optimum range selection Related of apparent power	< 0.2 %
Power/energy measurement temperature drift From 30 V 300 V (45 65 Hz) From 500 mA 120 A (45 65 Hz)	< 65 × 10 ⁻⁶
Power/energy measurement stability Stability over 1 hour (every minute one measurement with ti = 60 s)	< 200 × 10 ⁻⁶
Power/energy measurement long term stability Stability over 1 year (every month one measurement over one hour)	< 700 × 10 ⁻⁶ / Year

4 Design and operation of the user interface

Summary	This chapter describes the general layout of the user interface. Details of the screens displayed for the various functions are given in the Chapter <i>Functions</i> provided by the reference meter on page 57

Contents	In this Chapter	Page
	The software interface	21
	The status bar	22
	The function bars	23


The software interface

Details

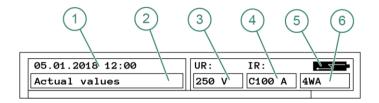
The software interface displays all the data and possible functions. The software is operated using the buttons arranged around the screen edge. Values can be entered using the numeric keys.

Layout of the software interface

The figure shows the essential layout of the software interface. The contents in the different areas of the screen vary depending on the function selected.

Areas of the software interface and their purpose

No.	Details	Function
1	Status bar	 Shows general system information such as system time and battery status Shows the selected function and the measurement presets
2	Display area	Shows the measurement data in various dis- play modes
3	Vertical function bar	Shows subfunctions for selection using function keys
4	Horizontal function bar	Shows various functions for selection using function keys



The status bar

Details

The status bar shows the currently selected function, the measurement range and the measurement mode.

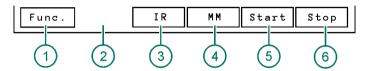
Layout of the status bar

Areas of the status bar and their purpose

No.	Details	Function
1	Date and time	Shows the date and time
2	Function	Shows the selected function
3	Voltage measuring range UR	Shows the voltage measurement range
4	Current measurement range IR	Shows the current measurement range
5	Battery indicator	Shows the power supply status
6	Mode MM	Shows the selected measurement mode

What the battery indicator means

Display	Details
<u></u>	Powered from the mains adapter
	Operation under battery power The status bar indicates the battery charge level.



The function bars

Purpose of the horizontal function bar

The horizontal function bar is used to select the function, measurement range and mode. It can also be used for actuating core functions of the reference meter such as starting and stopping the measurement.

Layout of the horizontal function bar

Functions of the horizontal function bar

No.	Name	Details
1	Func.	Select function
2	_	unassigned
3	IR	Select current measurement range
4	MM	Select measurement mode
	Print	Print measurement data
	Load	Load settings for external source
5	Start	Start measurementDisplay actual values for the measurement in progress
	Save	Save measurement dataSave settings for external source
	Delete	Delete all measurement data
	On	Enable external source
6	Stop	Stop measurementDisplay actual values for the stopped measurement
	Back	Back to function
	Off	Disable external source

Purpose of the vertical function bar

The vertical function bar is used to open the subfunctions of the functions ('Func.'). Details of the subfunctions are given with the associated functions.

MT30

5

Taking test measurements

Summary

The Taking test measurements chapter describes the test procedure for measuring certain values. Measurement results that can be displayed without any specific procedure are described directly in the chapter *The functions provided by the reference meter* on page 57.

Contents

In this Chapter	Page
Switching on the reference meter and preparing for testing	25
General procedure for a test measurement	27
Attaching the scanning head to the meter	30
Entering the meter constant	31
Error Measurement using a scanning head	32
Error Measurement without scanning head	34
Performing a W-register test (energy register)	37
Performing a P-register test (power register)	38

Switching on the reference meter and preparing for testing

Introduction

Certain preliminary settings must be made in order to perform a test measurement. These presets are retained for all measurements until changed again by the operator.

Switching on

Step	Procedure	
1	Press the ON/OFF button for about 5 seconds. Result: the screen comes on and the Start-up screen is displayed.	ON / OFF

Switching off

Step	Procedure	
1	Press the ON/OFF button for about 5 seconds. Result: the screen switches off.	
		ON / OFF

Selecting the system language

Step	Procedure	
1	Select the 'Settings' function.	
2	Select the subfunction 'Select the system language' .	
3	Select the language you require.	ENTER
		ENTER
4	Confirm your selection.	

Selecting the phase angle calculation under the 'Norm' entry

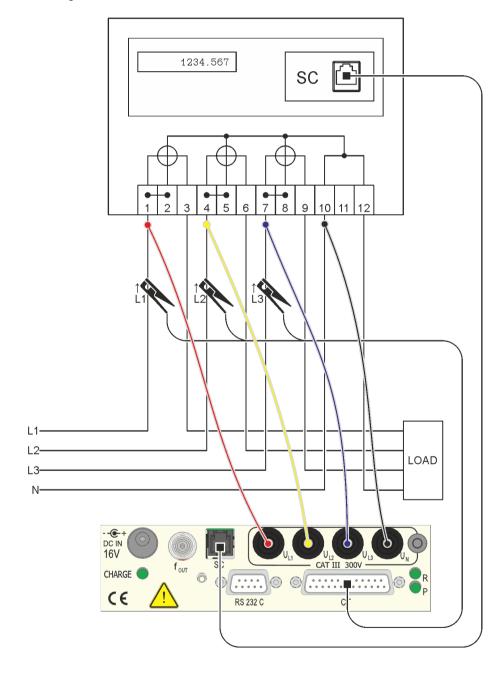
The 'Select angle calculation' subfunction under the 'Norm' entry defines how phase angles are measured, calculated and displayed in the vector diagram; see 'Settings' on page 79. The names of the two options derive from past standards. This documentation uses the terms 'IEC 387' and 'DIN 410' to distinguish between the two options. Selecting 'DIN 410' will define U1 as the reference value, while selecting 'IEC 387' defines I1 as the reference value.

Step	Procedure	
1	Select the 'Settings' function.	
2	Select the 'Select angle calculation' subfunction.	DEF
3	Choose the option you require: • IEC 387 or • DIN 410	(ENTER)
4	Confirm your selection.	

MT30 - Taking test measurements

Measuring under battery power

The test instrument can optionally be powered from rechargeable batteries rather than the mains adapter. Battery operation is not suitable for measurements that take a long time, which may be the case for the Error Measurement and Register tests.



General procedure for a test measurement

Measuring principle

In a meter test, the energy consumption measured (metered) by a meter is compared with the result from the reference meter. In order to be able to make the comparison, the reference meter must measure the current and voltage in exactly the same way as the meter itself, and compare these readings with the meter result. The meter result from the meter is signalled by pulses from an LED or the number of revolutions of a rotor disc. This signal can be detected by a scanning head and transmitted to the reference meter.

Typical connection diagram

MT30 – Taking test measurements

General procedure for connecting the reference meter to a device under test

Helits		
Step	Description	
1	Connect the AC current clamps to the CT input of the reference meter.	
2	Connect the voltage cables to the inputs U_1,U_2,U_3,U_N of the reference meter.	
3	Connect the reference meter to the mains supply:	
	 Connect the mains adapter to the mains supply. Connect the mains adapter to the DC IN 16V input of the reference meter. Switch on the reference meter. Result: the reference meter powers up. Wait until the reference meter is ready for use. 	
4	 Make the following settings at the reference meter: Select the current measurement range; see <i>The Measurement ranges</i> on page 55 Select a suitable measuring mode; see <i>The measuring modes</i> on page 56 	
5	Connect the voltage cables to the device under test:	
J	 first U_N then U₁, U₂, U₃ 	
6	Clamp the AC current clamps around the cables L1, L2 and L3 that supply the current. Make sure that the AC current clamps are fully closed and sit in the correct direction. Measurement results will be incorrect if the AC current clamps are not fully closed (air gap) or if the current is flowing in the wrong direction.	
7	Attach the scanning head to the meter; see Attaching the scanning head to the meter on page 30.	
8	Connect the scanning head cable to the SC input on the reference meter and then to the scanning head. Result: the LED on the scanning head flashes in time with the LED on the meter or the mark on the rotor disc. If this is not the case, realign the scanning head.	
9	Check the settings at the reference meter for the current measurement range, and correct the range if necessary.	
	Video tutorial:	
10	Enter the meter constant in the 'Error measurement' function; see <i>Entering</i> the meter constant on page 31.	
11	For CT operated meters, enter their associated ratio in the 'Ratio' function; see 'Ratio' on page 82.	
12	Perform the measurements you require.	

9. February 2023 28

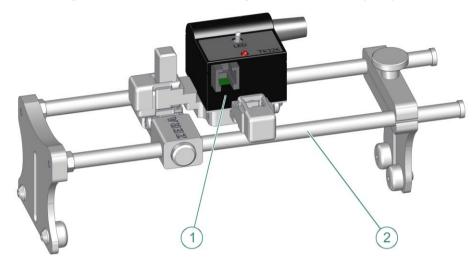
Save your test results.

13

MT30 – Taking test measurements

General procedure for disconnecting the reference meter from the device under test

Step	Description
1	Disconnect the scanning head cable from the scanning head and the reference meter.
2	Remove the scanning head.
3	Disconnect the voltage cables from the device under test: • U_1 , U_2 , U_3 first • U_N last
4	Remove the AC current clamps from the device under test.
5	Switch off the reference meter and disconnect it from the mains adapter.
6	Disconnect the voltage cables from the reference meter.
7	Remove the AC current clamps from the reference meter.


Attaching the scanning head to the meter

Further details on scanning heads

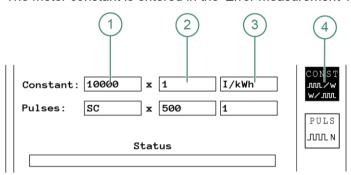
ZERA offers a range of scanning heads and mounts, each of which has its own Instructions for use. These dedicated Instructions for use contain details of the scanning heads and how they are fitted to the meter.

Illustration as an example

The following picture illustrates a scanning head with mount by way of example:

Design and operation

No.	Name	Details
1	Scanning head	 The scanning head detects the signal from the meter. Scanning heads come in various designs. They can be attached to the meter using mounts, magnets or suction pads, for instance. The scanning head is connected to the reference meter via the scanning-head input connector.
2	Mount	 The mount is used to fit the scanning head to the meter. Mounts come in various designs depending on the scanning head. The mounts can be fastened to the meter using clamps or even belts, e. g. for round-shaped meter enclosures.


Entering the meter constant

The meter constant

The meter constant indicates the number of LED pulses given per kWh for an electronic meter, or the number of revolutions made per kWh for a mechanical meter. The meter constant is written on the meter type plate or can be found in the meter documentation. The meter constant must be saved in the reference meter before the actual meter testing starts.

Screenshot of entering the meter constant

The meter constant is entered in the 'Error measurement' function.

Entering the meter constant

Step	Procedure
1	Open the subfunction for entering the meter constant (4).
2	Enter the meter constant in the input field (1). A multiplier (2) is needed for values \geq 1000000.
3	Select a multiplier from the list box (2). Exp-5 (0.00001) 1 Exp+5 (100000)
4	Select the units from the list box (3).

Units for the meter constant

Func- tion	Details
I/kWh	Pulses per kilowatt-hour
I/kvarh	Pulses per kilovar-hour for reactive power
I/kVAh	Pulses per kiloVolt-Ampere hour for apparent power
Wh/I	Watt-hours per pulse
varh/I	Var-hours per pulse for reactive power
VAh/I	Volt-Ampere hours per pulse for apparent power

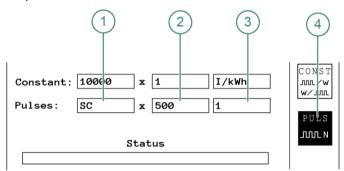
Error Measurement using a scanning head

Aim

The purpose of the error measurement using a scanning head is to measure the percentage error of the device under test.

Method

The reference meter uses the scanning head to detect the amount of energy (number of pulses) metered by the device under test, and compares this with the amount of energy measured by the reference meter. The percentage error is calculated from the comparison.


Requirements

The following requirements must be met before performing a test:

- The reference meter has been prepared for the test; see *General procedure* for a test measurement on page 27.
- The meter constant has been entered; see *Entering the meter constant* on page 31.
- The scanning head has been connected; see Attaching the scanning head to the meter on page 30
- The 'Error Measurement' function is open; see Error measurement on page 67.

Screenshot of entering the pulse source

The pulse source is entered in the 'Error measurement' function.

Entering data for the pulse source

Step	Procedure
1	Open the subfunction for entering the pulses to be counted (4).
2	Select the correct pulse source from the list box (1): • SC
3	 Enter the number of pulses (2) to be counted for the measurement (number of revolutions for Ferraris disc meters). A multiplier (3) is needed for values ≥ 1000000.
4	Select a suitable multiplier between 1 and Exp+5 (100000) from the list box (3). Result: • You have finished entering the data for the pulse source. • The button (4) returns to its normal appearance.

MT30 - Taking test measurements

Taking measurements

Step	Procedure	
1	Watch the LED on the scanning head to check it is emitting enough pulses in a suitable time period to avoid the test taking too long.	
2	Start the test. Result:	Start
	 The measured energy is displayed. The progress bar indicates how far the measurement has progressed. An error value is displayed once the first measurement has finished. The test continues to take further measurements. The unit displays the error for the most recent measurement. 	
3	Stop the test. Result:	Stop
	 The reference meter displays the error for the most recent measurement. Continuous measurements are stopped. 	
4	Save the measurement.	

Accuracy of the measurement

The accuracy of the measurement depends on fitting the scanning head precisely; for details, refer to the specific instructions for the scanning head used.

Error Measurement without scanning head

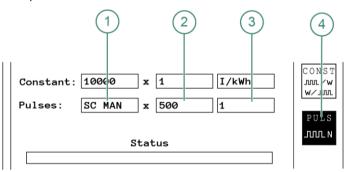
Aim

The error measurement without scanning head is intended for measuring the percentage error of the device under test when a scanning head cannot be used.

Method

The operator counts the amount of energy (pulses) signalled by the device under test. The reference meter simultaneously measures the amount of energy consumed. The operator starts and stops the meter-tester measurement manually.

The reference meter compares the energy values metered by the device under test with the amount measured by the reference meter. The percentage error is calculated from the comparison.


Requirements

The following requirements must be met before performing a test:

- The amount of energy supplied to the meter under test is so small that the operator can easily see and count the rotations of the rotor disc on Ferraris meters or the frequency of the flashing LED pulse.
- The reference meter has been prepared for the test; see *General procedure* for a test measurement on page 31.
- The meter constant has been entered; see Entering the meter constant on page 31.
- The 'Error Measurement' function is open; see Error measurement on page 67.

Screenshot of entering the pulse source

The pulse source is entered in the 'Error measurement' function.

Entering data for the pulse source

Taking measurements using 'TK MAN' pulse source (manual pushbutton) For the test using the manual pushbutton, the operator must count the signals until they reach the number entered under Pulses. At precisely this instant, the operator uses the manual pushbutton to confirm that the set number of pulses has been reached.

Follow these steps to perform the test:

Step	Procedure			
1	Watch the LED on the meter or watch the meter disc to check it is emitting enough signals in a suitable time period to avoid the test taking too long.			
2	Press the 'Start' function key to make ready for the measurement.	Start		
3	Start the measurement when there is a pulse (pulse zero) from the LED or meter disc by pressing the manual pushbutton. Result: • The measurement starts running.			
4	Count the number of pulses after the start pulse according to the set number of pulses. Do not touch the manual pushbutton while counting the pulses. Result: • The measured energy is displayed.			
5	Press the manual pushbutton once you have reached the last pulse to be counted, given by the set number of pulses. Result: The progress bar flashes. The error from the measurement is displayed. The next measurement begins; the measured energy is reset to 0. You can repeat this step as often as you wish.			
6	Stop the test. Result: The reference meter displays the error for the performed measurement. Continuous measurements are stopped.	Stop		
7	Save the measurement.			

MT30 - Taking test measurements

Taking measurements using Start and Stop

For the test using 'Start' / 'Stop', the operator must count the signals until they reach the number entered under Pulses. At this precisely this instant, the operator uses 'Stop' to confirm that the set number of pulses has been reached.

Follow these steps to perform the test:

Step	Procedure	
1	Watch the LED on the meter or watch the meter disc to check it is emitting enough signals in a suitable time period to avoid the test taking too long.	
2	Start the measurement when there is a pulse (pulse zero) from the LED or meter disc by pressing the 'Start' function key. Result:	Start
	The measured energy is displayed.	
3	Count the number of pulses after the start pulse according to the set number of pulses.	
4	Press the 'Stop' function key to stop the measurement once you have reached the last pulse to be counted, given by the set number of pulses.	Stop
	Result:	
	 The unit displays the error for the most recent measurement. 	
5	If possible, perform more than one test.	
6	Save the measurement.	

Accuracy of the measurement

The accuracy of the measurement in both measuring methods depends on the user. The user must count the pulses and press the manual pushbutton or 'Stop' at the right moment.

Performing a W-register test (energy register)

Aim

The W-register test is designed to test the accuracy of a W-register (energy register).

Method

The operator reads the initial value in the W-register from the device under test and enters this reading in the reference meter. The reference meter then measures the energy consumption over a certain period of time. The operator stops the measurement, reads the final value in the W-register from the device under test and also enters this reading in the reference meter.

The percentage error is calculated from the comparison of the entered readings with the value measured by the reference meter.

Requirements

- The reference meter has been prepared for the test; see General procedure for a test measurement on page 27.
- The required current range has been selected; see *The measurement ranges* on page 55.
- The required mode has been selected; see The measuring modes on page 56
- The 'W-register test' function is open; see *W-register test (energy register)* on page 69.

Taking measurements

Follow these steps to perform the test:

Step	Procedure	
1	Open the function for entering the initial value from the energy register.	REG → ⊠
2	Enter the initial value and select the register units.	
3	Start the test.	Start
4	Stop the test.	Stop
5	Open the function for entering the final value from the energy register.	REG
6	Enter the final value and select the register units. Result: The reference meter displays the calculated error.	

Accuracy of the measurement

The accuracy of the measurement depends on the user. The user must read and enter the values at the start and stop time correctly and precisely.

Performing a P-register test (power register)

Aim

The P-register test is designed to test the accuracy of a P-register (power register).

Method

The operator reads the initial value in the P-register from the device under test and enters this reading in the reference meter. The reference meter then measures the power over a certain period of time. The operator stops the measurement, reads the final value in the P-register from the device under test and also enters this reading in the reference meter.

The percentage error is calculated from the comparison of the entered readings with the value measured by the reference meter.

Requirements

- The reference meter has been prepared for the test; see General procedure for a test measurement on page 27.
- The required current range has been selected; see The measurement ranges on page 55.
- The required mode has been selected; see The measuring modes on page 56.
- The 'P-register test' function is open; see P-register test (power register) on page 70.

Entering the time for the P-register test

You have the option to change the settings for the measurement time.

1 Open the setting for the measurement time. 2 Manual time measurement • Skip the step for entering the measurement time • Select 'Off'. Automatic time measurement • Enter a measurement time • Select 'On'.

Performing a P-register test

Step	Procedure	
1	Open the function for entering the initial value from the power register.	REG → ⊠⊠
2	Enter the initial value and select the register units.	
3	Start the test.	Start
4	Stop the test (only if automatic time measurement is 'Off')	Stop
5	Open the function for entering the final value from the power register.	R E G
6	Enter the final value and select the register units. Result: The reference meter displays the calculated error.	

Accuracy of the measurement

The accuracy of the measurement depends on the user. The user must read and enter the values at the start and stop time correctly and precisely.

MT30

6

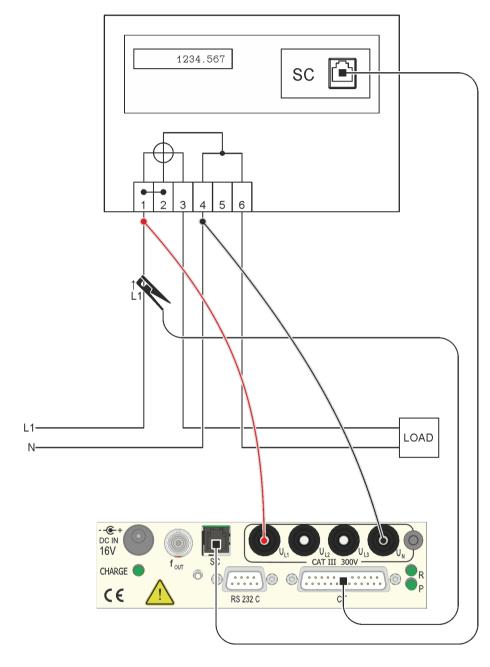
Connection diagrams

т	٠,	mmar	٠	c
	v	mmar	SI 11	٠.

The connection diagrams show how the reference meter must be connected for different types of meter connection. They state the measuring modes available for each connection type and what settings are needed for the measuring mode.

Contents

In this Chapter	Page
Single-phase 2-wire meter connected directly	40
Three-phase 3-wire meter connected directly	42
Three-phase 3-wire meter with current and voltage transformer	44
Three-phase 4-wire meter connected directly	46
Three-phase 4-wire meter with current transformer	48
Three-phase 4-wire meter with current and voltage transformer	50


Single-phase 2-wire meter connected directly

Required data

• Meter constant; see Entering the meter constant on page 31

Measuring modes available Connection diagram

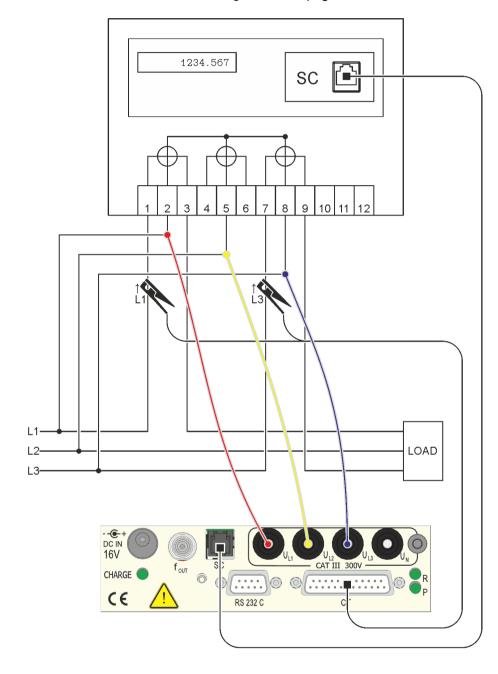
modes 2WA, 2WR, 2WAP, see *The measuring modes* on page 56

Rules

The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter

Also refer to the General procedure for a test measurement on page 27.



Three-phase 3-wire meter connected directly

Required data

- Meter constant; see Entering the meter constant on page 31
- Enter the ratio 1:1 for the voltage transformer (VT) and current transformer (CT); see *Settings* on page 79

Measuring modes available Connection diagram 3WA, 3WR, 3WAP, see The measuring modes on page 56

MT30 - Connection diagrams

Rules

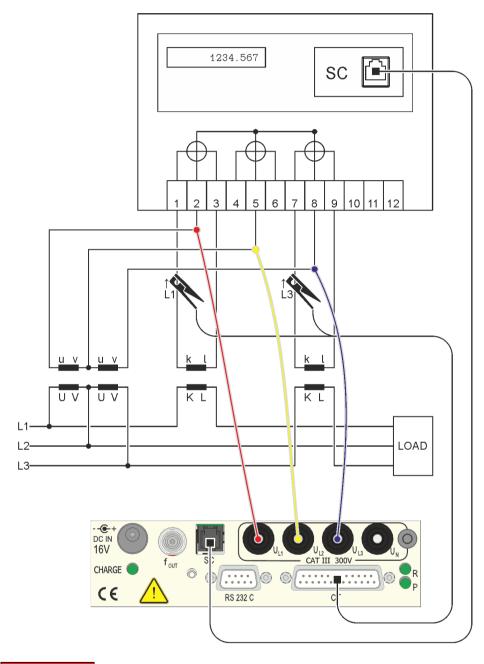
The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter

Also refer to the General procedure for a test measurement on page 27.

Interpreting the measurement results

With this type of connection, the following readings are not shown: current for L2, \angle UI, \angle IU, λ , S for all lines.



Three-phase 3-wire meter with current and voltage transformer

Required data

- Meter constant; see Entering the meter constant on page 31
- Ratio for voltage transformer (VT); see Settings on page 79
- Ratio for current transformer (CT); see Settings on page 79

Measuring modes available Connection diagram 3WA, 3WR, 3WAP, see The measuring modes on page 56

Do not open the secondary side of the current transformer

A DANGER

High voltage generated by opening the secondary side of the current transformer while the transformer is still electrically live.

If the secondary side of the current transformer is opened while current is still flowing in the primary side, i.e. the primary side is still live, a hazardous high voltage may be induced in the secondary side.

• Never under any circumstances open the secondary side of a current transformer while the transformer is electrically live.

Rules

The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter

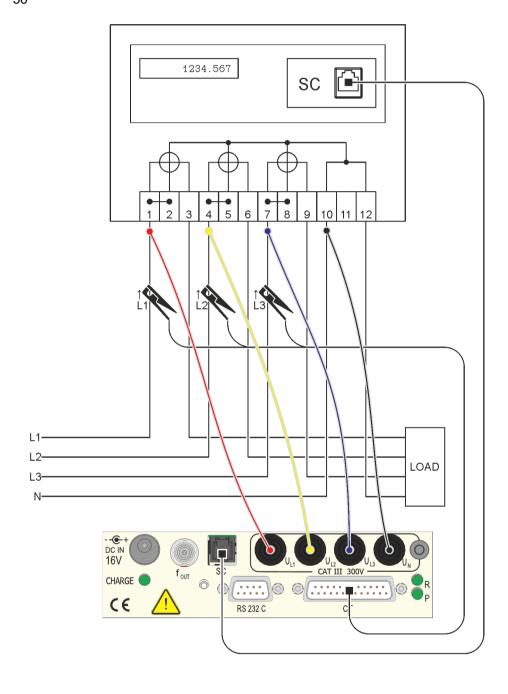
Also refer to the General procedure for a test measurement on page 27.

Interpreting the measurement results

With this type of connection, the following readings are not shown: current for L2, \angle UI; \angle IU λ , S, for all lines.

Three-phase 4-wire meter connected directly

Required data


- Meter constant; see Entering the meter constant on page 31
- Enter the ratio 1:1 for the voltage transformer (VT) and current transformer (CT);

see Settings on page 79

Measuring modes available

4WA, 4WAb, 4WR, 4WRb, 4WAP, 4WAPb, see *The measuring modes* on page

Connection diagram

MT30 - Connection diagrams

Ratio for instrument transformer

Since an instrument transformer is not used in the circuit, set the ratio for instrument transformer to 1 : 1.

- · 'Settings': ratio
 - Voltage transformer U: 1 × 1 → 1 × 1
 - Current transformer I: 1 → 1

or

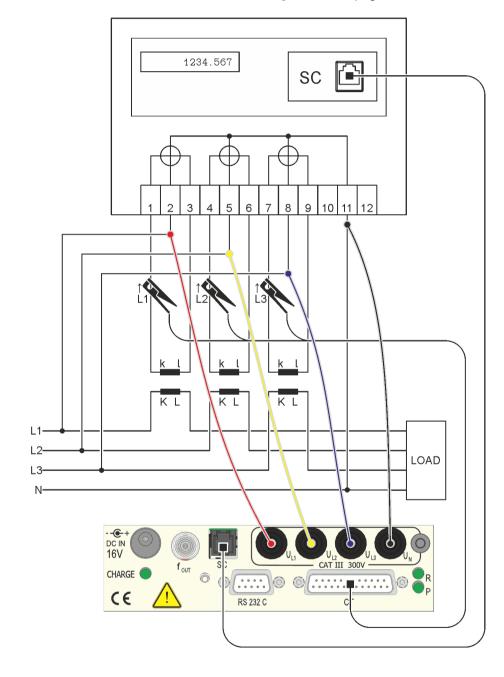
• 'Settings (2)': ratio for the meter constant is disabled for Actual values (and Register test) and Meter constant (error measurement)

Rules

The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter.

Also refer to the General procedure for a test measurement on page 27.



Three-phase 4-wire meter with current transformer

Required data

- Meter constant; see Entering the meter constant on page 31
- 1:1 ratio for voltage transformer (VT); see Settings on page 79
- Ratio for current transformer (CT); see Settings on page 79

Measuring modes available Connection diagram 4WA, 4WAb, 4WR, 4WRb, see The measuring modes on page 56

Do not open the secondary side of the current transformer

▲ DANGER

High voltage generated by opening the secondary side of the current transformer while the transformer is still electrically live.

If the secondary side of the current transformer is opened while current is still flowing in the primary side, i.e. the primary side is still live, a hazardous high voltage may be induced in the secondary side.

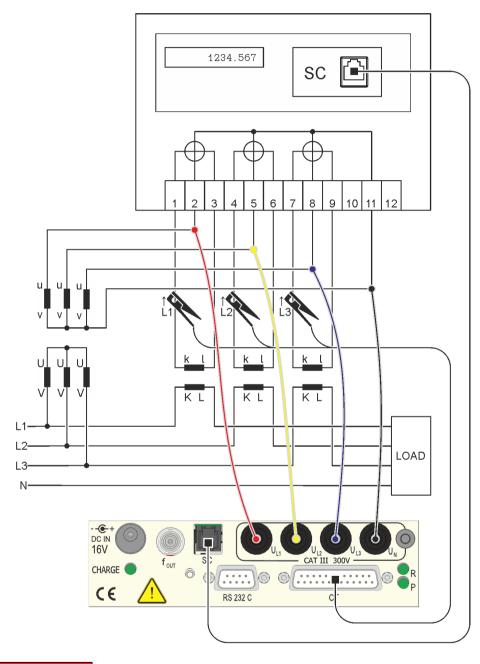
 Never under any circumstances open the secondary side of a current transformer while the transformer is electrically live.

Rules

The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter

Also refer to the General procedure for a test measurement on page 27.



Three-phase 4-wire meter with current and voltage transformer

Required data

- Meter constant; see Entering the meter constant on page 31
- Ratio for voltage transformer (VT); see Settings on page 79
- Ratio for current transformer (CT); see Settings on page 79

Measuring modes available Connection diagram 4WA, 4WAb, 4WR, 4WRb, see The measuring modes on page 56

Do not open the secondary side of the current transformer

A DANGER

High voltage generated by opening the secondary side of the current transformer while the transformer is still electrically live.

If the secondary side of the current transformer is opened while current is still flowing in the primary side, i.e. the primary side is still live, a hazardous high voltage may be induced in the secondary side.

• Never under any circumstances open the secondary side of a current transformer while the transformer is electrically live.

Rules

The following rules must be observed when connecting the clamps:

- AC current clamps come in different designs, for insulated lines or for uninsulated lines. The AC current clamps for insulated lines must be used only on insulated lines; see the Instructions for use for the particular AC current clamps.
- The 25-pin connector for the AC current clamps must not be removed from the test instrument while the AC current clamps are still clamped around a line or the test instrument is still on.
- Clamp the AC current clamp around the cable of the line that leads to the current input terminal. The arrow on the current clamp points towards the meter

Also refer to the General procedure for a test measurement on page 27.

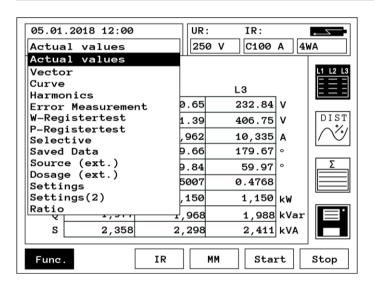
MT30

7

The horizontal function bar of the reference meter in detail

Summary	The horizontal function bar is used to select the function, measurement range
-	and mode. It can also be used for actuating core functions of the reference me-
	ter such as starting and stopping the measurement.

Contents	In this Chapter	Page
	The functions in outline	53
	The measurement ranges	55
	The measuring modes	56


The functions in outline

Function groups

The functions can be grouped into the following areas:

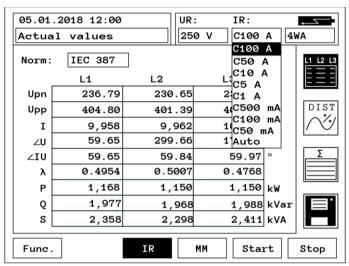
Function group	Function
Measured values display	Actual ValuesVectorCurveHarmonicsSelective - optional
Running tests	Error MeasurementW-RegistertestP-Registertest
Settings	SettingsSettings(2)Ratio
Data management	Saved Data
Controlling an external device	Source (ext.) - optionalDosage (ext.) - optional

The functions

The functions in outline

Function	Description	Subfunctions
Actual Values	Displays the actual measured values as a table	 U, I, ∠U, ∠UI; ∠IU, λ, P, Q, S Distortion factor Total power values
Vector	Displays the actual values as a vector diagram	NormalDelta mode3-line mode
Curve	Displays the actual values as a waveform	Selection of required UL and IL channels
Harmonics	Displays the harmonics of the actual values referred to the fundamental frequency	 As a table up to the 40th harmonic As a bar graph up to the 40th harmonic
Error Measurement	Measures the error of a meter	Entering themeter constantspulse sourcenumber of pulses for measurement
P-Registertest	Tests the power register of a meter	Entering register readings

MT30 - The horizontal function bar of the reference meter in detail


Function	Description	Subfunctions
W-Registertest	Tests the energy register of a meter	Entering register readings
Selective	Displays the active, reactive and apparent power components of the first 40 harmonics	 Selection of L1, L2, L3 Selection of harmonics to be displayed
Saved Data	Displays the saved data	Navigation around the saved data
Source (ext.)	Controls an external ZERA source	 Selecting the Symmetry/ Frequency Entering voltage, current and phase angle Activating individual phases Saving and managing settings
Dosage (ext.)	Controls the "dose" of energy supplied from an external ZERA source	Actuating dosage modeEntering the dosage energy
Settings	Used for specifying global set- tings that apply to all the meas- urements	System languagePhase angleControl of the reference meter
Settings(2)	Used for specifying additional global settings that apply to all the measurements	System timeCalculation method for the apparent powerPrinter
Ratio	Can be used to enter the transformer ratios of input-side current and/or voltage transformers.	 Ratio for input-side voltage and current transformers Ratio for high-current transformer of AC current clamps Conversion of actual values

The measurement ranges

Measurement ranges

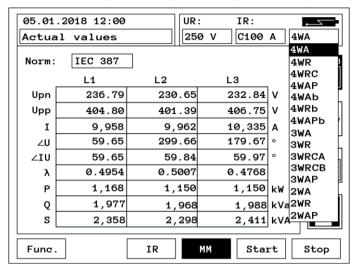
The voltage measurement range 'UR' is always 250 V. The current measurement ranges can be selected. It is essential to choose the correct measurement range to obtain an accurate measurement result.

What the voltage measurement range means (IR:)

Current measure- ment range	Details
C100 A to C50 mA	Measurement range set manually using AC current clamp
Auto	Measurement range set automatically

Selecting the setting

With the 'Auto' setting, the reference meter seeks the appropriate measurement range itself.


If the power consumption varies sharply at the measurement point, we recommend selecting the measurement range manually. Any strong variation in the power consumption when 'Auto' is set will result in incorrect measurement results, e.g. in the error measurement and power measurement.

The measuring modes

Mode (MM)

The measuring mode required depends on the way the meter under test is connected. Selecting the wrong measuring mode will produce incorrect results.

What the measuring modes mean

Mode	Details
2WA	1-phase, 2-Wire, Active power
2WR	1-phase, 2-Wire, Reactive power
2WAP	1-phase, 2-Wire, APparent power
4WA	3-phase, 4-Wire, Active power
4WAb	3-phase, 4-Wire, Active power of fundamental harmonic
4WR	3-phase, 4-Wire, Reactive power, true
4WRC	3-phase, 4-Wire, Reactive power with phase-shift Circuit
4WAP	3-phase, 4-Wire, APparent power
3WA	3-phase, 3-Wire, Active power
3WR	3-phase, 3-Wire, Reactive power, true
3WRCA	3-phase, 3-Wire, Reactive power with phase-shift Circuit A
3WRCB	3-phase, 3-Wire, Reactive power with phase-shift Circuit B
3WAP	3-phase, 3-Wire, APparent power

Optional measuring modes

Mode	Details
4WRb	3-phase, 4-Wire, Reactive power of fundamental harmonic
4WAPb	3-phase, 4-Wire, APparent power of fundamental harmonic

Special features of the 3phase, 3-wire measurements For this measuring mode, the total apparent power (ΣS) is always geometric.

$$S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$$

MT30

8

The functions of the reference meter

Summary	The reference meter provides many different functions and measurement
	ranges, each available for a choice of measuring modes.

Contents	In this Chapter	Page
	Actual values	58
	Vector	61
	Curve	64
	Harmonics	65
	Error measurement	67
	W-register test (energy register)	69
	P-register test (power register)	70
	Selective – optional	71
	Saved Data	72
	Source (ext.) - optional	74
	Dosage (ext.) – optional	77
	Settings	79
	Settings (2)	81
	Ratio	82
	The Save Data subfunction	84

Actual values

Description

The 'Actual Values' function displays the currently measured values as a table.

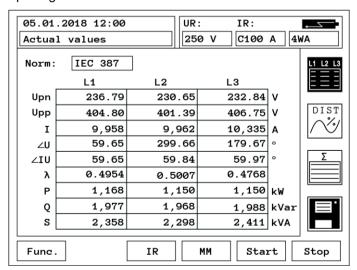
Application

The table view of the actual values provides a rapid overview for error analysis. The actual values measurement helps to assess the condition of the mains supply and the meter installation, for instance no voltage, no current, incorrect current polarity, symmetry and asymmetry, etc.

Subfunctions

The 'Actual Values' function contains the following subfunctions:

Function	Details
L1 L2 L3 	 Main measured values displayed in table form Selecting the phase angle calculation under the 'Norm' entry: IEC 387 or DIN 410
DIST	Harmonic distortion factor displayed in table form
Σ	Total values for power displayed in table form
	See Save Data subfunction on page 84

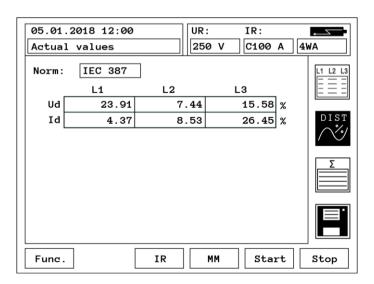

Meaning of the 'Norm' selection for the phase angle display

The choice made under the 'Norm' entry affects how values are displayed:

Options	Details
IEC 387	 Current vectors are fixed, voltage vectors are variable Reference value I1, displayed horizontally φ(I₁) is always 0 (in 3 O'clock position) Positive angle is anticlockwise
DIN 410	 Voltage vectors are fixed, current vectors are variable Reference value U1, displayed vertically φ(U1) is always 0 (in 12 O'clock position) Positive angle is clockwise

Measured values displayed as a table

The standard for the phase-angle representation must be defined first when opening this view.

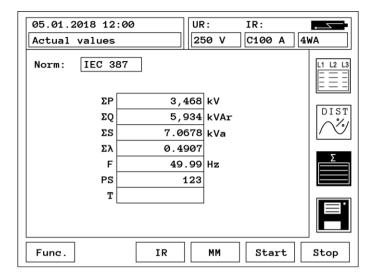

MT30 - The functions of the reference meter

What the values in the table mean

Some of the measured values displayed are calculated values; see *Calculation of derived values* on page 86.

Measured value	Details	Source	Resolution
Upn	Effective value of the voltage be- tween phase and neutral for each phase	measured	0.01 V
Upp	Effective value of the voltage between the phases 1–2, 2–3, 3–1	calculated	0.01 V
I	Effective value of the current for each phase	measured	100, 50 A: 0.001 A 10, 5, 1 A: 0.0001 A 500 mA: 0.01 mA
∠U	Phase angle ϕ of the voltage, with zero phase given by the chosen standard	measured	0.01°
∠UI; ∠IU	Phase angle between voltage and current (DIN 410) or current and voltage (IEC 387). The values are the same in both standards.	measured	0.01°
λ	 Power factor Active power measurement: λ = P/S = cos(∠UI) Reactive power measurement: λ = Q/S = sin(∠UI) 	calculated	0.0001
Р	Active power	calculated	0.01 W 0.001 kW
Q	Reactive power	calculated	0.01 var 0.001 kvar
S	Apparent power	calculated	0.01 VA 0.001 kVA

Harmonic distortion factor displayed in table form


What the measured distortion factors mean

Measured value	Details	Source	Resolution
Ud	Distortion factor for the voltage of one phase	calculated	0.01 %
Id	Distortion factor for the current in one phase	calculated	0.01 %

MT30 - The functions of the reference meter

Total values in table form

What the total values in the table mean

Measured value	Details	Source	Resolution
ΣΡ	Sum of the active powers for all the phases	calculated	0.01 W 0.001 kW
ΣQ	Sum of the reactive powers for all the phases	calculated	0.01 var 0.001 kvar
ΣS	Sum of the apparent powers for all the phases Setting for the calculation method: Settings (2) on page 81	calculated	0.01 VA 0.001 kVA
Σλ	Total power factor	calculated	0.0001
F	Frequency	measured	0.01 Hz
PS	Direction of rotating field 123: ∪ clockwise rotation 132: ∪ anticlockwise rotation	calculated	
Т	Temperature The temperature display is only possible when a temperature sensor is connected. The screen displays "???" if a sensor is not connected.	measured	0.01 °C

Vector

Description

The 'Vector' function displays the actual values as a vector diagram. Certain representations are only relevant to certain measuring modes.

Application

Die vector diagram helps to locate circuit faults:

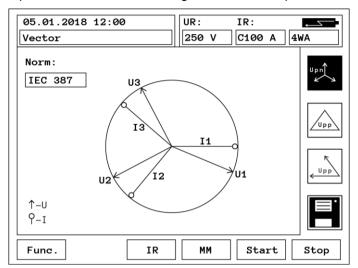
- · Incorrect connections
 - · Wrong terminal and incorrect rotating field
 - Polarity (e.g. K-L swapped over)
- Short-circuits
 - Inside the meter (e.g. transport damage)
 - At the current transformer (e.g. jumper not removed)
 - Damage to insulation (e.g. through overheating / overloading)
- · Open-circuits
 - In the instrumentation of the meter (e.g. transport damage)
 - · Voltage tab not closed
 - · Broken wire
 - · Contact fault

Subfunctions

The 'Vector' function contains the following subfunctions:

Function Details · Measured values displayed in vector form Upn • Selecting the phase angle calculation under the 'Norm' entry: IEC 387 or DIN 410 · Shows voltage between line and neutral (Star) • Useful for the following measuring modes: 4WA · Measured values displayed in vector diagram in Delta mode · Voltage between two lines Upp · Useful for the following measuring modes: Measured values displayed in vector form in 3-wire mode · Useful for the following measuring modes: Upp 3WA See Save Data subfunction on page 84

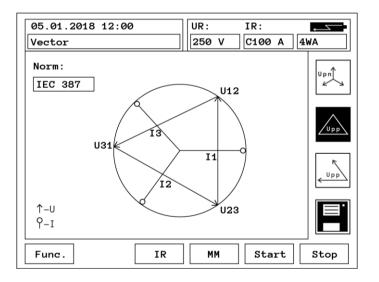
Meaning of the 'Norm' selection for the vector diagram


The choice made under the 'Norm' entry affects how values are displayed:

Options	Details
IEC 387	 Current vectors are fixed, voltage vectors are variable Reference value I1, displayed horizontally φ(I1) is always 0 (in 3 O'clock position) Positive angle is anticlockwise
DIN 410	 Voltage vectors are fixed, current vectors are variable Reference value U1, displayed vertically φ(U1) is always 0 (in 12 O'clock position) Positive angle is clockwise

MT30 - The functions of the reference meter

Measured values displayed in vector form in 4WA mode Options 'IEC 387': I1 to the right is defined as $\varphi = 0$.

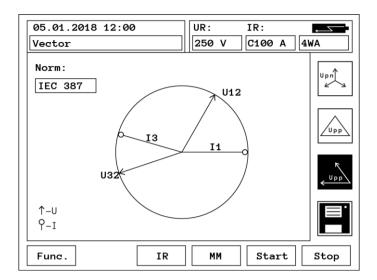


Options 'DIN 410': U1 vertically upwards is defined as $\varphi = 0$.

What the values in the vector diagram mean

Parameter	Details
U1, U2, U3	Voltage between neutral and line 1, 2, 3
I1, I2, I3	Current in phase 1, 2, 3

Measured values displayed in vector diagram in Delta mode


What the values in the vector diagram mean in Delta mode

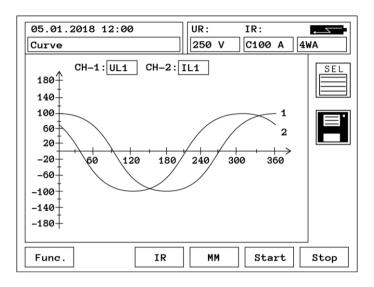
Parameter	Details
U12	U1 - U2 as a vector
U23	U2 - U3 as a vector
U31	U3 - U1 as a vector
I1, I2, I3	Current in phase 1, 2, 3

MT30 - The functions of the reference meter

Measured values displayed in vector diagram in 3-wire mode

What the values in the vector diagram mean in 3-wire mode

Parameter	Details
U12	U1 - U2 as a vector
U32	U3 - U2 as a vector
I1	Current in phase 1
I3	Current in phase 3



Curve

Description

The 'Curve' function displays the actual values as a waveform.

Display

Description of parameters

Parameter	Details
CH-1	Measured value from channel 1
CH-2	Measured value from channel 2
Vertical	Measured value in % of measurement range
Horizontal	Phase angle in °

Subfunctions

The 'Curve' function contains the following subfunctions:

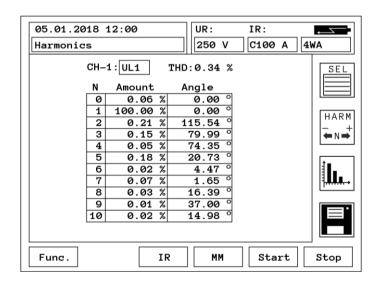
Function Details SEL Select the measured value for channel CH-1: UL1, UL2, UL3, IL1, IL2, IL3 Select the measured value for channel CH-2: UL1, UL2, UL3, IL1, IL2, IL3 See Save Data subfunction on page 84

Harmonics

Description The 'Harmonics' function displays the actual values of the harmonics referred to

the fundamental harmonic.

Application The 'Harmonics' function indicates whether there are harmonic distortions in the

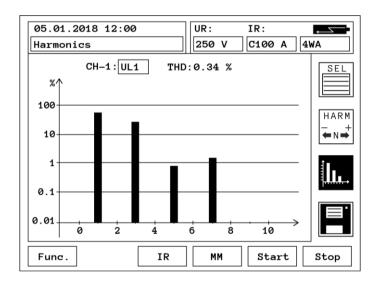

current or voltage.

Measurements on currents of less than 50 mA give inaccurate results. This is because the AC current clamps inherently produce high harmonic components when I \leq 50 mA.

Subfunctions The 'Harmonics' function contains the following subfunctions:

Function	Details
SEL	Select the measured value for CH: • UL1, UL2, UL3, IL1, IL2, IL3
HARM - + N →	Measured value and angle displayed in table form Switch display to the next 10 harmonics: 010→1020→2030→3040→010→
	Open the bar graph viewClose the bar graph view
	See Save Data subfunction on page 84

Displayed as a table



MT30 - The functions of the reference meter

What the values in the table mean

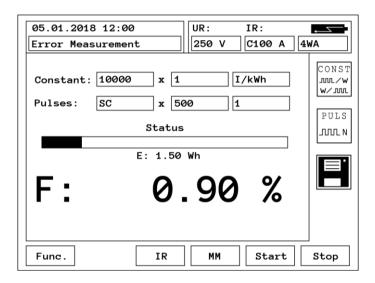
Parameter	Details
СН	Selected channel; default setting: UL1
THD	Total harmonic distortion up to the 40th harmonic in %
N	Number of the harmonic. 11 harmonics are displayed at once.
Amount	The ratio of the amplitudes of the Nth harmonic and fundamental in %
Angle	Magnitude of the phase angle between the Nth harmonic and the fundamental in $\ensuremath{^\circ}$
0	DC component
1	Fundamental: mains frequency f
2.	2 × f
3	3 × f
etc.	etc.

Displayed as a bar graph

What the values in the bar graph mean

Parameter	Details
CH	Selected channel
THD	Total harmonic distortion in %
Vertical	The ratio of the amplitudes of the Nth harmonic and fundamental in $\%$ on logarithmic scale
Horizontal	Number of the harmonic

Error measurement


Description

The 'Error measurement' function measures the error of a meter. The error measurement compares the energy measured by the reference meter with the energy measured by the meter. The energy measured by the meter is transferred to the reference meter by a pulse sensor or by the user counting the pulses. When the measurement has finished, the error of the device under test is displayed as a %.

The following sections explain how to perform the error measurement:

- Settings on page 79
- Error measurement under manual control on page 34

Display

Description of the display

Parameter	Details
Constant:	Meter constant, multiplier and units
Pulses:	Pulse sourceNumber of pulses to be countedMultiplier
Status	The bar shows how far the measurement has progressed E: states the energy measured by the reference meter during the measurement
	If the device under test is reading accurately, the amount of energy given by the pulse count will equal the amount of energy measured. For the case given in the example above, this would be:
	$E = \frac{500 \times 11}{10000 \times 1 \frac{1}{\text{kWh}}} = 0.05 \text{kWh}$
F:	Error for the last measurement in %

MT30 – The functions of the reference meter

Subfunctions

The 'Error measurement' function contains the following subfunctions:

Function	Details
CONST .nn./w w/.nn.	Enter the meter constantSelect the multiplierSelect the units
PULS JUL N	 Select the pulse source Enter the number of pulses to be counted Multiplier selection: 1, EXP+1, EXP,+2, Exp+5 (100000)
	See Save Data subfunction on page 84

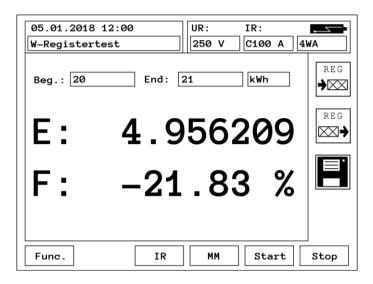
Units for the meter constant

Function	Details
I/kWh	Pulses per kilowatt-hour
I/kvarh	Pulses per kilovar-hour for reactive power
I/kVAh	Pulses per kiloVolt-Ampere hour for apparent power
Wh/I	Watt-hours per pulse
varh/I	Var-hours per pulse for reactive power
VAh/I	Volt-Ampere hours per pulse for apparent power

Pulse source

It is possible to select from four different types of pulse sources and operating procedure:

Туре	Details
SC	With scanning head The pulses from the scanning head are transferred 1:1 to the reference meter.
SC MAN	Without scanning head An external manual pushbutton is used to trigger the start and stop signals for the measurement. In this method, the user counts the pulses/revolutions and presses the external pushbutton according to the count.
SC1000	F OUT from another reference meter Additional 1000:1 pulse step-down ratio. The pulses from another pulse source are transferred in the ratio 1000:1 to the reference meter. The divisor (1000) is used by the internal software, i.e. the constant can be entered directly and the number of pulses must be divisible by 1000 and have a minimum value of 1000.
St/St	Without scanning head In this method, the user counts the pulses/revolutions and presses the following function keys on the reference meter to start and stop the measurement: • Start (to start) • Stop (to stop)



W-register test (energy register)

Description

The 'W-Registertest' function tests the energy register of a meter. The energy register contains the total amount of energy consumed over time. This test finds the difference between the initial value in the energy register at the start time and the final value at the stop time. The difference equals the energy metered by the device under test. The percentage error is calculated by comparing this energy with the energy measured by the reference meter.

Display

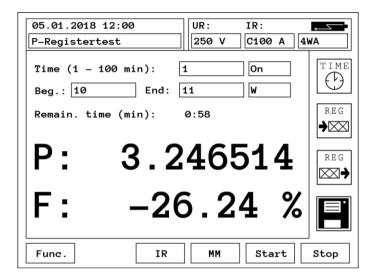
Description of parameters

Parameter	Details
Beg.:	Value entered as the initial value from the energy register
End:	 Value entered as the final value from the energy register Selected units (μWh MWh)
E:	Measured energy in selected units
F:	Energy register error in %

Subfunctions

The 'W-Registertest' function contains the following subfunctions:

	•
Function	Details
R E G →	 Input the initial value from the energy register Select the units (μWh MWh)
REG XX →	 Input the final value from the energy register Select the units (μWh MWh)
	See Save Data subfunction on page 84



P-register test (power register)

Description

The 'P-Registertest' function tests the power register of a meter. A power register contains the peak value of the power that occurred in a measured time period. The P-register test compares the value metered by the device under test (final value) with the value measured independently by the reference meter, and calculates the error from the difference.

Display

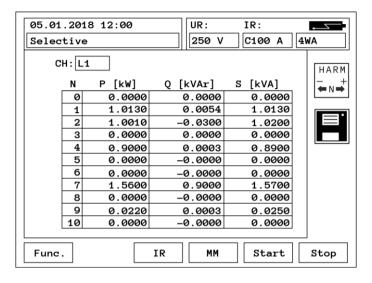
Description of parameters

Parameter	Details
Time:	Selected measurement period in minutes, and status of the automatic timer
Beg.:	Value entered as the initial value from the power register The initial value is needed in order to identify whether a peak value (final value) of power was retrieved during the measurement that was higher than the initial value.
End:	 Value entered as the final value from the power register The final value must be greater than the initial value for the reference meter to obtain a relevant comparison value. Selected units (μW MW)
Remain. time (min):	Time remaining for the measurement in minutes
Р	Measured power in selected units
F	Power register error in %

Subfunctions

The 'P-Registertest' function contains the following subfunctions:

Function	Details
TIME	Input the measurement periodActuate the automatic timer
REG → ⊠⊠	 Input the initial value from the power register Select the units (μW MW)
R E G	• Input the final value from the power register • Select the units (μW MW)
	See Save Data subfunction on page 84



Selective - optional

Description

The 'Selective' function displays the active, reactive and apparent power for the first 40 harmonics of a selected phase. The sign in front of a measured value indicates whether the power is being drawn from the mains or fed into the mains.

Display

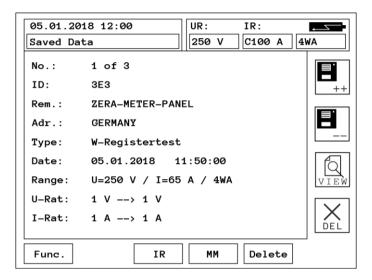
Description of parameters

Parameter	Details
CH	Selected line
N	Display shows the measurements for the first 10 harmonics
P [(k)W]	Active power [units]
Q [(k)var]	Reactive power [units]
S [(k)VA]	Apparent power [units]

Subfunctions

The 'Selective' function contains the following subfunctions:

Function	Details
SEL	Phase selection: L1, L2, L3
HARM - + +	Show the next 10 harmonics: 010→1020→2030→3040→010→
	See Save Data subfunction on page 84



Saved Data

Description

The 'Saved Data' subfunction displays in the reference meter the saved measurement data and the relevant settings in the reference meter associated with this data.

Display

Description of the display

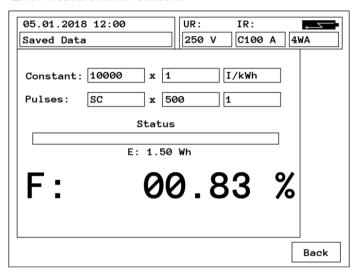
Parameter	Details
No.:	Data record number
ID:	Customer ID
Rem.:	Comment
Adr.:	Address
Type:	Function used to perform the test, e.g. error measurement
Date:	Date of the measurement
Range:	Measurement ranges and mode
U-Rat:	Voltage transformer ratio
I-Rat:	Current transformer ratio

Subfunctions

The 'Saved Data' function contains the following subfunctions:

Function	Details
++	Display the next data record
	Display the previous data record
VIEW	View details of the selected data record
X	Delete the currently viewed data record

MT30 - The functions of the reference meter


The horizontal function bar

The horizontal function bar differs from the standard function key layout by including the following function key:

Function	Details
Delete	Delete all the data records

Detailed view

The Detailed view for a measurement corresponds to the view for the function in which the data was saved. The data in the screenshot below was saved in the 'Error measurement' function.

Source (ext.) - optional

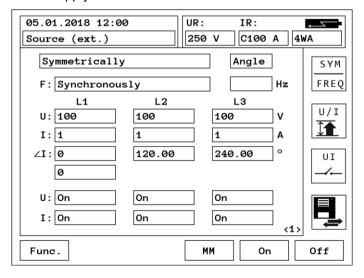
Description

The 'Source (ext.)' function controls an external ZERA source. When an external source is connected, the 'Source (ext.)' function can be used to define and actuate the load point required for the device under test. The operator can set the value for the current and phase angle or power factor for each phase.

Requirement

The following requirements must be met:

- · An external ZERA source is connected to the reference meter.
- The source and reference meter are connected by an RS232 cable.

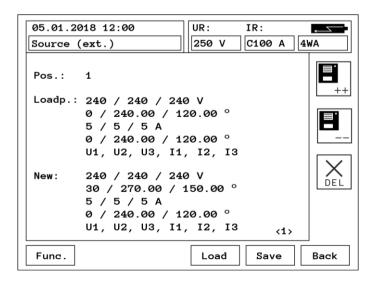

Subfunctions

The 'Source (ext.)' function contains the following subfunctions:

Function	Details
SYM FREQ	Options: Sym or Freq Symmetrically or Frequency is selected under cursor control. Additional selections/entries are then made. Sym: • Symmetrically • Angle • PF (Power factor) • Not symmetrically • Angle Freq: • Synchronously • Variable • Enter the frequency
U/I 11	Enter voltage and current of the source
UI -/-	Activate individual phases of the source
	Open the subfunction for loading or saving the load point

Display showing the set load point

The screen contents will vary depending on the settings for the symmetry of the mains supply.



Description of input data

Parameter	Details
Symmetrically / Not symmetri- cally	Symmetrically: Voltage and current can be set for L1 and then are adopted automatically for L2 and L3. The following phase angles apply depending on the standard: • IEC 387: $\phi(IL1) = 0^{\circ}$, $\phi(IL2) = 120^{\circ}$, $\phi(IL3) = 240^{\circ}$ • DIN 410: $\phi(UL1) = 0^{\circ}$, $\phi(UL2) = 240^{\circ}$, $\phi(UL3) = 120^{\circ}$ Not symmetrically: • Voltage, current and phase angle for the voltage and current can
Angle / PF	be set as required for each phase. Choice of 'Angle' or 'PF' (power factor) Angle: The phase angle for the voltage (IEC 387) or for the current (DIN 410) can be set for L1 and adopted automatically for L2 and L3. PF: The same power factor can be set for L1 - L3. The power factor defines the phase angle.
F:	Select the frequency: • Synchronously: the frequency cannot be entered • Variable: a frequency can be entered: 45–65 Hz
U:	Enter the voltage for each phase
I:	Enter the current for each phase
∠I ∠U: / P/Q:	 Enter the phase angle ∠I for IEC 387 ∠U for DIN 410 P/Q: Input and settings for the power factor and the quadrant
U:	Activation status of the voltage for each phase
I:	Activation status of the current for each phase
<#> (bottom right)	Number for the loaded load point

Display for the subfunction for loading or saving the load point

MT30 - The functions of the reference meter

Description of the display

Parameter	Details
Pos.:	No. of the saved load point
Loadp.:	Data for the selected load point (empty if a load point has not been saved)
New:	Currently set data for the load point
<#>	No. of the saved load point

Subfunctions for loading or saving the load point

The 'Save data' subfunction contains the following subfunctions:

Function	Details
++	Display the next saved load point
	Display the previous saved load point
X	Delete the saved load point displayed for 'Loadp.:'

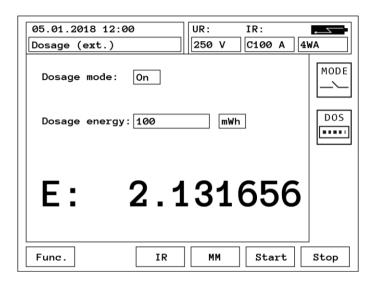
Horizontal function bar

The horizontal function bar differs from the standard function key layout by including the following function keys:

Function	Details
Load	The load point displayed for 'Loadp.:' is set
	Back to the 'Source (ext.)' function
Save	The load point displayed for 'New:' is saved as the load point
Back	Back to the 'Source (ext.)' function without loading or saving

Dosage (ext.) - optional

Description


The 'Dosage (ext.)' function controls the amount (or "dose") of energy supplied from an external ZERA source. The 'Dosage (ext.)' function can be used with a ZERA MT400/500 source to supply a specified amount of energy to the device under test.

Requirement

The following requirements must be met:

- An external ZERA source is connected to the reference meter.
- The source and reference meter are connected by an RS232 cable.
- The source and reference meter are connected by a BNC cable.

Display

What data is entered and displayed

Parameter	Details
Dosage mode:	Status of dosage mode
Dosage energy:	Value and units of the dosage energy
E:	Shows the amount of energy still to be supplied after starting the dosage function.

Subfunctions

The 'Dosage (ext.)' function contains the following subfunctions:

Function	Details
MODE	Disable/Enable dosage mode: • 'On': enables dosage mode • 'Off': disables dosage mode
DOS	Enter the dosage energy: amount and units.

MT30 – The functions of the reference meter

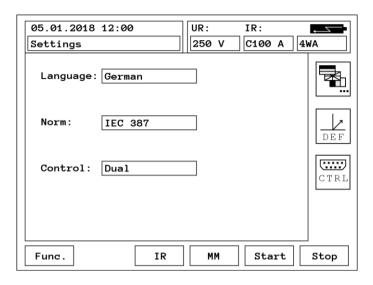
Dosage procedure

The dosage process is performed in the following stages:

Stage	Procedure
1	On dosage mode being enabled, the external source cuts off the supply of current.
2	When the dosage function is started, the external source switches on the current.
3	The external source supplies current until the specified amount of dosage energy is reached.
4	Once the specified amount of dosage energy is reached, the external source cuts off the supply of current again.

Closing dosage mode

Dosage mode must be set to 'Off' again at the end of the dosage function. If dosage mode is left enabled, this can cause malfunctions.



Settings

Description

The 'Settings' function is used for specifying global settings that apply to all the measurements. The settings must always be made before the actual measurement.

Display

Subfunctions

The 'Settings' function contains the following subfunctions:

Function	Details
	Select the system language Languages available: German, English, Italian, French, Czech, Spanish, Turkish, Serbian, Hungarian
DEF	Select the phase angle calculation under the 'Norm' entry Choice of IEC 387 or DIN 410
CTRL	Select the mode for controlling the source and dosage of the reference meter • Device • Dual • External

Meaning of the 'Norm' selection for the phase angle calculation

The choice made under the 'Norm' entry affects how values are displayed:

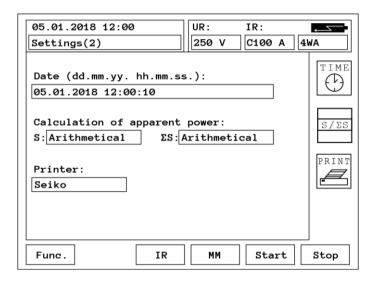
Options	Details
IEC 387	 Current vectors are fixed, voltage vectors are variable Reference value I1, displayed horizontally φ(I₁) is always 0 (in 3 O'clock position) Positive angle is anticlockwise
DIN 410	 Voltage vectors are fixed, current vectors are variable Reference value U1, displayed vertically φ(U1) is always 0 (in 12 O'clock position) Positive angle is clockwise

MT30 – The functions of the reference meter

What the input data means for the Control function

An external instrument connected to the reference meter via the RS232 port can be used to control the reference meter. The list box contains the following options:

Input	Details
Device	Control is via the reference meter's built-in keypadThe external instrument is not used for control purposes
Dual	Control is via the reference meter's built-in keypadThe external instrument is also used for control
External	 Control is not possible via the reference meter's built-in keypad Only the external instrument is used for control



Settings (2)

Description

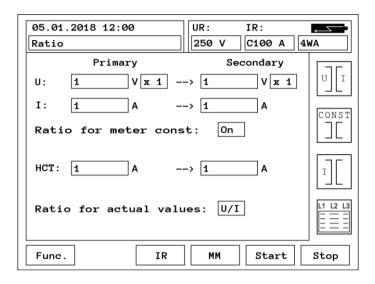
The 'Settings (2)' function is used for specifying additional global settings that apply to all the measurements. The settings must always be made before the actual measurement.

Display

Subfunctions

The 'Settings (2)' function contains the following subfunctions:

The detailings (2) function contains the following subfunctions.		
Function	Details	
TIME	Enter the system time in the format dd.mm.yyyy hh:mm:ss	
S/ES	Select the method for calculating the apparent power for each separate phase (S) and as a total value (ΣS) • Arithmetical $S_{\Sigma} = U_1 \cdot I_1 + U_2 \cdot I_2 + U_3 \cdot I_3$ • Geometrical $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$	
PRINT	Optional function: Select a connected thermal printer: Seiko Mobile Pro	



Ratio

Description

The 'Ratio' function is used for entering the transformer ratios of any current and voltage transformers that may be connected on the input side of the meter. These ratios can then be taken into account to provide the correct measured values. The values for the transformer ratios must always be entered before the actual measurement.

Display

Subfunctions

The 'Ratio' function contains the following subfunctions:

Function Details Enable the input of all the rated voltages and currents, starting with the rated primary voltage (pressing the Enter key takes you to the next input U Ι option) Disable/Enable the ratio for the meter constant: CONST · 'On': enable · 'Off': disable Enter the rated-current ratio for external high-current transformers (HCT) in AC current clamps (the ratio is obtained by dividing the value entered Ι for the primary rated current by the value entered for the secondary rated current of the HCT) NOTICE! Because no other external current clamps can be connected to this device, the operator must ensure that the values set here are always Select the conversion for the actual values. L1 L2 L3 • U/I: Select this option for measurement using current or voltage transformers · Off: Select this option for a measurement without current or voltage transformers (measurement directly at the meter) HCT: This function is not supported by the MT30.

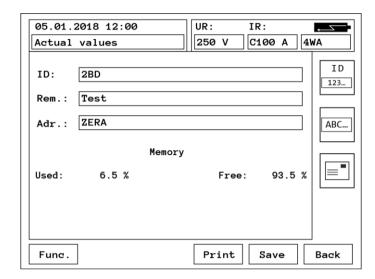
MT30 - The functions of the reference meter

Ratio for voltage and current transformer

In many meter installations, transformers are used to step down the large voltage and current values. The measurement must take into account the ratios for the transformers depending on the position of the taps.

For voltage transformers it is also necessary to enter a factor for the primary and secondary sides of the transformer. There is a choice of two values:

Factor	Usage
x1	for two-pole voltage transformers in a three-phase, 3-wire meter installation, where the voltage value represents the voltage from phase to phase e.g. 11 kV
1/√3	for single-pole voltage transformers in a three-phase, 4-wire meter installation, where the voltage value represents the voltage from phase to phase e.g. 11 kV/ $\sqrt{3}$


The Save Data subfunction

Description

The 'Save Data' subfunction can be used to save the currently measured data for the selected function. The 'Save Data' subfunction is available in most functions.

If the Print function is available (optional), the currently measured data for the selected function can be printed.

Display

Description of the display

Parameter	Details	
ID:	Customer ID	
Rem.:	Comment	
Adr.:	Address	
Used:	Percentage of memory space used	
Free:	Percentage of memory space available	

Subfunctions

The 'Save data' subfunction contains the following subfunctions:

Function	Details
ID 123	Enter customer ID • 25 characters maximum
ABC	Enter comment • 25 characters maximum
	Enter address • 25 characters maximum

MT30 - The functions of the reference meter

Horizontal function bar

The horizontal function bar differs from the standard function key layout by including the following function keys:

Function	Details
Print (optional)	Print the currently measured data including the customer information
Save	Save the data record • Updates the percentages for used and available memory space
Back	Return to the function without saving the data record

Information on printing

The data that is printed is always the data for the function from which 'Save data' was opened.

Requirements:

- The 'Print' option is available.
- A suitable printer is connected to the RS-232 port.
- The printer is configured; see Settings(2) on page 81

Information on saving

- If several sets of data need to be saved under the same customer ID, there is no need to re-enter the address and comments.
- A PC running the relevant software can be used to access the data held in the memory. It is also possible, for instance, to reprint a vector diagram from the saved values.

Memory usage

- · Total memory space: 250 kB
- Approximate memory usage per save operation for one data record for the functions:
 - Actual Values, Vector, Harmonics, Error Measurement, P-Registertest, W-Registertest: 0.2 % of the total memory space
 - · Waveforms: 1.6 % of the total memory space

MT30

9

Calculation of derived values

Voltage, current and measurement periods are measured, but all other variables are calculated and are therefore derived values. In all formulae, an L as subscript stands for the line, where L is a member of the set {L1; L2; L3}. If the turns ratio for voltage or current is not 1:1, the given formulae must be corrected accordingly.

Contents	In this Chapter	Page
	Calculating the voltage	87
	Calculating the current	88
	Power for the 4-wire measurement	89
	Power for the three-phase 3-wire measurement	90
	Phase angles	91
	Accuracy test	92

Calculating the voltage

Effective value of the voltage

$$U_{L} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} U_{L;n}^{2}}$$

Effective value of the voltage between line L and neutral

Sampled value of the voltage between line L and neutral

Ν Number of samples

Voltage harmonic

$$U_{k} = \sqrt{a_{U_{k}}^{2} + b_{U_{k}}^{2}}$$

$$U_{k} \% = \frac{U_{k}}{U_{1}} \cdot 100 \%$$

Number of the harmonic

 U_{k} Effective value of the kth voltage harmonic

U_k% Ratio of U_k to U_1 in %

Effective value of the voltage fundamental

Real part of Uk

$$a_{U_{k}} = \frac{2}{N} \sum_{n=0}^{N-1} U_{n} \cos\left(k \frac{2\pi n}{N}\right)$$

$$b_{U_{k}} = \frac{2}{N} \sum_{n=0}^{N-1} U_{n} \sin\left(k \frac{2\pi n}{N}\right)$$

Imaginary part of Uk

Total harmonic distortion (THD) of the voltage

THD
$$(U_{L})\% = \frac{\sqrt{\sum_{k=2}^{40} U_{L;k}^{2}}}{U_{L:1}}$$

 $\mathsf{THD}(U_\mathsf{L})\% = \frac{\sqrt{\sum_{k=2}^{40} U_{\mathsf{L};k}^2}}{U_\mathsf{L}:1} \quad \mathsf{THD}(U_\mathsf{L})\% \quad \mathsf{Total harmonic distortion (THD) of the voltage in \%}$

Distortion factor (THD_R) of the voltage

THD_R
$$(U_L)\% = \frac{\sqrt{\sum_{k=2}^{40} U_{L;k}^2}}{U_1}$$

 $\mathsf{THD}_{\mathsf{R}}(U_{\mathsf{L}})\% = \frac{\sqrt{\sum_{k=2}^{40} U_{\mathsf{L};k}^2}}{U_{\mathsf{L}}} \quad \mathsf{THD}_{\mathsf{R}}(U_{\mathsf{L}})\% \quad \mathsf{Distortion factor} \; (\mathsf{THD}_{\mathsf{R}}) \; \mathsf{of} \; \mathsf{the \; voltage \; in}}{\%}$

Calculating the current

Effective value of the current

$$I_{L} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} I_{L;n}^{2}}$$

 I_L Effective value of the current in line L $I_{L;n}$ Sampled value of the current in line L

N Number of samples

Current harmonic

$$I_{k} = \sqrt{a_{I_{k}}^{2} + b_{I_{k}}^{2}}$$

$$I_{k} \% = \frac{I_{k}}{I_{1}} \cdot 100 \%$$

k Number of the harmonic

Effective value of the kth current harmonic

 I_k % Ratio of I_k to I_1 in %

 I_1 Effective value of the fundamental of the current

 $a_{
m Ik}$ Real part of $I_{
m k}$

$$a_{I_{k}} = \frac{2}{N} \sum_{n=0}^{N-1} I_{n} \cos\left(k \frac{2\pi n}{N}\right)$$

$$b_{I_{k}} = \frac{2}{N} \sum_{n=0}^{N-1} I_{n} \sin\left(k \frac{2\pi n}{N}\right)$$

 $b_{\rm Ik}$ Imaginary part of $I_{\rm k}$

Total harmonic distortion (THD) of the current

THD
$$(I_{L})\% = \frac{\sqrt{\sum_{k=2}^{40} I_{L;k}^{2}}}{I_{L;1}}$$

 $\mathsf{THD}(I_\mathsf{L})\%$ Total harmonic distortion (THD) of the current in %

Distortion factor (THD_R) of the current

THD_R
$$(I_L)$$
%= $\frac{\sqrt{\sum_{k=2}^{40} I_{L;k}^2}}{I_L}$

THD_R(I_L)% Distortion factor (THD_R) of the current in %

Power for the 4-wire measurement

Active power

$$P_{L} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} u_{L;n}^{2} \cdot i_{L;n}^{2}}$$

P_L Active power for line L

 $u_{L;n}$ Sampled value of the line-neutral voltage for line L

 $i_{L;n}$ Sampled value of the current in line L

N Number of samples in a period (1/f)

Reactive power

$$Q_{L} = \frac{1}{N} \sum_{n=1}^{N} u_{L;n}^{2} \cdot i_{L;n-N/4}^{2}$$

Q_L Reactive power for line L

u_{L;n} Sampled value of the phase-neutral voltage for the line L

 $i_{L;n-N/4}$ Sampled value of the current in line L, ½ period ahead of the voltage

N Number of samples in a period (1/f)

Apparent power

In geometric mode:

$$S_{L} = \sqrt{P_{L}^2 + Q_{L}^2}$$

In arithmetic mode:

$$S_L = U_L \cdot I_L$$

S_L Apparent power for line L

Power factor λ

$$\lambda_{L} = \frac{P_{L}}{Q_{I}}$$

λ_L Power factor for phase L; for sinusoidal variables, equals the active power

Active power factor cos φ

Only applies to function tests in the 4-wire active mode (4WA)

Only applicable with sinusoidal variables: $THD_R(I_L)$; $THD_R(I_L) \approx 1$

Total powers P_{Σ} , Q_{Σ} , S_{Σ}

$$P_{\Sigma} = P_{L1} + P_{L2} + P_{L3}$$

$$Q_{\Sigma} = Q_{L1} + Q_{L2} + Q_{L3}$$

In geometric mode:

$$S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$$

In arithmetic mode:

$$S_{\Sigma} = U_1 \cdot I_1 + U_2 \cdot I_2 + U_3 \cdot I_3$$

 P_{Σ} Total active power

 Q_{Σ} Total reactive power

 S_{Σ} Total apparent power

Power for the three-phase 3-wire measurement

Active power $P_2 = U_{L32} \cdot I_{L3} \cdot \cos(\angle U_{L32} - \angle I_{L3})$ P_1 ; P_2 Active powers

 $P_1 = U_{112} \cdot I_{11} \cdot \cos(\angle U_{112} - \angle I_{11})$

U_{L32} Effective value of the voltage between lines

L3 and L2

*U*_{L12} ... L1 and L2

 I_{L1} ; I_{L3} Effective value of the currents in the outside

lines L1 and L3 respectively

Reactive power (true)

 $Q_1 = U_{L12} \cdot I_{L1} \cdot \sin(\angle U_{L12} - \angle I_{L1})$ $Q_2 = U_{132} \cdot I_{13} \cdot \sin(\angle U_{132} - \angle I_{13})$

Q₁; Q₂ reactive powers

U_{L32} Effective value of the voltage between lines

L3 and L2

*U*_{L12} ... L1 and L2

 I_{L1} ; I_{L3} Effective value of the currents in the outside

lines L1 and L3 respectively

Total powers P_{Σ} , Q_{Σ} , S_{Σ}

 $P_{\Sigma} = P_1 + P_2$

 $Q_{\Sigma} = Q_1 + Q_2$

In geometric mode:

 $S_{\Sigma} = \sqrt{P_{\Sigma}^2 + Q_{\Sigma}^2}$

 P_{Σ} Total active power

 Q_{Σ} Total reactive power

Total apparent power (always geometric)

9. February 2023 90

Phase angles

Phase angle of the voltage

$$\angle U_{L} = \arctan\left(\frac{b_{U_{1,1}}}{a_{U_{1,1}}}\right) - \phi_{Ref}$$

- ∠ *U*_L Phase angle of the fundamental voltage harmonic in line L referred to the reference channel
- ϕ_{Ref} Phase angle of the reference channel (DIN410: U1; IEC387: I1)
- $a_{U_1;L}$ Real part (active component) of the 1st voltage harmonic in line L
- $\emph{b}_{U_1;L}$ Imaginary part (reactive component) of the 1st voltage harmonic in line L

Phase angle of the current

$$\angle I_L = \arctan\left(\frac{b_{I_{1,1}}}{a_{I_{1,1}}}\right) - \varphi_{Ref}$$

- $_{\it L}$ Phase angle of the fundamental current harmonic in line L referred to the reference channel
- ϕ_{Ref} Phase angle of the reference channel (DIN410: U1; IEC387: I1)
- $a_{I_1;L}$ Real part (active component) of the 1st current harmonic in line L
- $b_{I_1;L}$ Imaginary part (reactive component) of the 1st current harmonic in line L

Accuracy test

Accuracy test

$$F\% = \frac{N_{\text{must}} - N_{\text{actual}}}{N_{\text{actual}}} \cdot 100\%$$

$$N_{\text{must}} = \frac{3600 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{actual}} \text{ Actual number of pulses received from the DUT}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{h}} \cdot 1000 \frac{\text{w}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

$$N_{\text{bulk}} = \frac{1000 \frac{\text{s}}{\text{kW}} \cdot n \cdot C_{\text{PZ}}}{U_{\text{B}} \cdot I_{\text{B}} \cdot C}$$

Error (measurement deviation) in %

N_{must} Number of pulses calculated by the reference meter that must be received from the DUT

Number of cycles (n + 1 = number of measurement cycles)

 U_{B} Voltage measurement range

Current measurement range I_{B}

 C_{PZ} Reference frequency at 100% P (Q) in Hz Meter constant or pulse constant [kWh-1/ С

kvarh⁻¹]

Meter constant

The reference meter has a power-proportional output frequency of 60000 Hz in each nominal voltage and current measurement range.

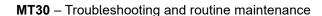
Formula for converting the output frequency into pulses per kilowatt-hour.

$$C\left[\frac{\mathsf{Imp}}{\mathsf{kWh}}\right] = \frac{1000 \cdot 3600 \cdot 60000 \frac{\mathsf{Imp}}{\mathsf{s}}}{n \cdot U_{\mathsf{B}} \cdot I_{\mathsf{B}}} \quad \begin{array}{c} n \\ U_{\mathsf{B}} \end{array} \quad \begin{array}{c} \mathsf{Number of lines} \ (n \in \{1; 3\}) \\ \mathsf{Voltage measurement range} \\ I_{\mathsf{B}} \end{array} \quad \begin{array}{c} \mathsf{Current measurement range} \\ \mathsf{Current measurement range} \end{array}$$

Current measurement range

Value table for C for n = 3 and U_B = 250 V:

<i>I</i> _B [A]	C [Imp/kWh]
100	2880000
50	5760000
10	28800000
5	57600000
1	288000000
0.5	576000000



MT30

10

Troubleshooting and routine maintenance

Contents	In this Chapter	Page
	Cleaning and routine maintenance	94
	Battery use	95
	Potential problems arising from the hardware	96
	Potential problems arising from use	97
	Warranty, Service, Disposal	99

Cleaning and routine maintenance

Frequency of cleaning and maintenance

There are no set intervals for cleaning and maintenance. The usage determines how often cleaning and maintenance is carried out.

Cleaning the reference meter

Use a soft, slightly damp cloth to clean the instrument.

Never use abrasive cleaners, solvents or alcohol for cleaning. These may damage the equipment or remove its labelling

age the equipment or remove its labelling.

Cleaning the cables The cables must be cleaned regularly because dirt can affect or reduce the in-

sulating properties/insulation. This may cause electric shock or a short-circuit in

wet or damp environments.

Always inspect the cables for signs of damage. Damaged cables must be re-

placed.

Cleaning and maintaining the AC current clamps

The clamps of the AC current clamps must be cleaned regularly with a soft cotton cloth using a corrosion inhibitor spray such as CRC 2-26

Check that the clamp jaws meet up. The clamp jaws may get twisted out of shape if the clamps are not handled carefully. This will result in inaccurate

measurements. Twisted clamp jaws must be replaced.

Battery use

The batteries

If batteries are fitted, the reference meter can be used temporarily without the mains adapter. The power is then supplied by the batteries (3 in all). The batteries are rechargeable lithium-ion batteries (3.7 V / 2200 mAh).

Battery use

Fire and explosion hazard arising from mechanical damage or overheating of the batteries

Mechanical damage can cause short-circuits inside the battery. The resultant current flow can produce heat, which in turn can cause a fire or explosion, which may not even occur until hours after the damage. The same applies to operation above the approved operating temperature.

- Protect the batteries from mechanical damage.
- Do not use the batteries in an environment that is warmer than 60 °C.

Battery lifetime

Batteries only have a limited lifespan. If the reference meter works for less than 30 minutes from a fully charged battery then the batteries are faulty. A faulty battery is also indicated by rapid flashing of the 'Charge' LED.

New batteries can be purchased from ZERA. For ordering information, please see the MT30 product catalogue.

Battery charging

The batteries are charged while the mains adapter is connected. The charge level is indicated by the 'Charge' LED.

LED	Details
Permanently on	Instrument being powered from the mains adapter Internal battery is fully charged
Flashing slowly	Instrument being powered from the mains adapter Internal battery is being charged
Flashing rapidly	Instrument being powered from the mains adapter Internal battery is faulty; must be replaced immediately
Off	Instrument under battery power

Storage

The charge level of lithium ion batteries needs to be checked regularly if they are stored for prolonged periods. The optimum charge level is between 50 % and 80 %. Although the self-discharge rate of 1 % per month is extremely low, it is highly dependent on temperature. Lithium-ion batteries should be recharged every 3 to 4 months to prevent deep discharge. If a cell gets to less than 2 Volts it may be irreparably damaged. Lithium-ion batteries should be stored in as cool a place as possible because of the sharp drop in lifetime associated with an increase in storage temperature.

Potential problems arising from the hardware

Instru	ıman	t will	not	run
TH201	umen	l will	HOL	TUIT

Cause	Suggested remedy
Instrument has "frozen"	Press the Reset button: the reference meter starts running
No power supply	Check whether the adapter is supplying 16 V. • If not, replace the mains adapter.
Batteries flat or faulty	Connect a power supply Battery indicator flashing rapidly: batteries faulty Battery indicator flashing slowly: batteries being charged
Current measurement ranges not displayed	Insert plugs from AC current clamps correctly. If the current measurement ranges are still not displayed, replace the AC current clamps

No response to the ON/OFF button

Cause	Suggested remedy
ON/OFF button pressed too briefly	Press ON/OFF button for at least 5 secs
Instrument has "frozen"	Press the Reset button: the reference meter starts running

Current measurement ranges not displayed

Cause	Suggested remedy	
AC current clamps not plugged in correctly	Screw in place the 25-pin plug for the AC current clamps.	
AC current clamps are faulty	Replace the AC current clamps	

Incorrect voltage and current measurements

Cause	Suggested remedy	
Instrument is no longer calibrated correctly	Run functional test; seePower check	

No light on scanning head

Cause	Suggested remedy	
Lead is loose or faulty	Check lead is connected properlyReplace lead	
Scanning head is faulty	Replace scanning head	

Potential problems arising from use

Actual values are
incorrect or too high

Cause	Suggested remedy
Wrong ratio for volt- age/current transformer	 Enter the correct values in 'Settings' Enable/Disable the ratio for voltage/current transformer in 'Settings 2'

Error measurement reads 99.99 % or HH.HH %

Cause	Suggested remedy
Ratio for voltage/current transformer	 Enter the correct values in 'Settings' Enable/Disable the ratio for voltage/current transformer in 'Settings 2'
Incorrect meter constant	Correct the meter constant under 'Error measurement'Enable/Disable the meter constant in 'Settings 2'
Incorrect measuring mode	Set correct mode
Scanning head not adjusted correctly	Correct the scanning head

Error measurement taking too long or does not start

Cause	Suggested remedy	
Incorrect current measurement range	Set the correct current measurement range	
Number of pulses to be counted is too high	Check/correct pulse number and factor	
Scanning head not adjusted correctly	Reposition the scanning head correctly	

The percentage error is 67 % or 33 %

Cause	Suggested remedy	
AC current clamps con- nected in wrong order	Check test setup • AC current clamp L1 to L1, L2 to L2, L3 to L3, check di-	
	rection of current for the AC current clamp	
Voltage connection UL1, UL2, UL3, UN mixed up	Check test setup	
Scanning head not adjusted correctly	Check the scanning head	

Accuracy for $\cos \varphi = 1$ is OK but not for $\cos \varphi = 0.5$ ind

Cause	Suggested remedy	
AC current clamps corroded	Clean them	
AC current clamps do not close completely	Replace the AC current clamps	

High error (e.g. 2000 %) in the P-/W-register test

Cause	Suggested remedy
Wrong ratio for volt- age/current transformer	 Enter the correct values in 'Settings' Enable/Disable the ratio for voltage/current transformer in 'Settings 2'

Unable to perform Save operation

Cause	Suggested remedy • Press Enter then press Save	
Cursor in wrong field		
Memory full	Clear the memoryBack up the data first on a PC if necessary	

MT30 - Troubleshooting and routine maintenance

be switched off

	Data download to the PC will not run	Cause	Suggested remedy
		RS232 cable not connected properly	Check connection
		Wrong interface port selected	Select the correct interface in MTVis software
	Data download was stopped	Cause	Suggested remedy
		Timeout time in MTVis software is too short	Select a larger value
	Data download taking too long	Cause	Suggested remedy
		Other entries being made in parallel with the data download	Do not press any buttons during the download
	The power from an external source cannot	Cause	Suggested remedy
CALCITICE SOCIOC CONTINUE			

Set Dosage mode to 'Off'

Dosage mode is enabled

in the Dosage function

(ext.).

Warranty, Service, Disposal

Warranty

ZERA guarantees to the customer that any product from ZERA GmbH, Germany is free from defects in materials and/or workmanship for the duration of the warranty period. ZERA GmbH will repair or replace damaged parts that are returned post-paid during the warranty period. Replacement or repair of damaged parts will be free of charge provided there are no signs of misuse or usage other than for its intended purpose. ZERA GmbH does not extend this warranty to damage caused by incorrect or inadequate maintenance or operation by unqualified persons. ZERA GmbH does not extend this warranty to cover costs for routine maintenance or for calibration required by local laws and regulations. ZERA GmbH does not extend this warranty to consumable parts such as rechargeable batteries or other parts subject to wear from frequent use.

ZERA GmbH does not accept liability for any special, direct, indirect, incidental or consequential damages or losses (including loss of data) whether as a result of infringements of the warranty and contractual terms and conditions or on any theory of liability.

This warranty runs for a period of 12 months from the date of installation or for a period of 15 months from the date of dispatch, whichever is earlier.

The ZERA Service

If you need spare parts or have any technical questions, please contact our Service department, making sure you have the following information to hand:

- · Equipment serial number
- Equipment order number
- · Detailed description of the problem/fault

To contact our Service department:

Tel +49 2244 9277-169 Email service@zera.de

Returns

Should it be necessary to return the instrument to ZERA for servicing or repair work, pack the unit carefully and firmly with suitable packaging and ship it in a well-padded cardboard box to avoid damage. Never return the reference meter in an unsealed or flexible pack. ZERA does not accept liability for any damage arising from improper packing.

Procedure for a Service request

ZERA's website (www.zera.de) includes a Service/Repair area giving precise instructions on how to place a Service request. A special CALL form is provided for this purpose, which you need to download from the website. Then simply follow the guidance on the CALL form.

Disposal - WEEE

During their entire lifetime, the products from ZERA GmbH do not pose a potential hazard to human health or the environment if the following conditions are met:

- · product used properly in accordance with intended use
- · product disposed of in accordance with WEEE regulations.

ZERA GmbH is registered under WEEE reg. no. DE 53879641. This is required according to EU law for the disposal of waste electrical and electronic equipment.

According to EU law, it is the responsibility of the user to dispose of the product in accordance with WEEE regulations.

Index

<u>∠</u>
∠IU58
∠U58
∠UI58
Α
AC current clamps12, 94
Active power58, 71
Actual values53, 58, 97
Apparent power58, 71, 81
Auto55
В
Bar graph65
Basic kit12
Battery95
Battery compartment14
Battery indicator22
С
Cables12, 94
Calculation86
Case12
Computer
Connection27
Connection diagrams27, 39, 40, 42, 44, 46, 48, 50
Connection sequence27
Connection diagrams27, 39, 40, 42, 44, 46, 48, 50
Connection sequence27
Control buttons15
CT17
Current measurement range22, 23, 55
display22
select23
Current transformer 44, 48, 50, 82
Cursor control15
Curve53, 64

D

DC IN 16V		17
Declaration of conformity		5
Derived values		86
Disconnection		27
Display area		21
Disposal		99
Distortion factor58, 65,	87,	88
Dosage (ext.)	53,	77
Dosage energy		77
Dosage mode		77
=		
Effective values		88
Energy register test		
Error Measurement 32, 34, 53, 67,		
using scanning head		32
without scanning head		34
=		
=		
OUT		
Frequency		
Function		
Actual values53,		
Curve		
display		
Dosage (ext.)		
Error Measurement 32, 34, 53, 67,		
Harmonics		
P-Registertest38,		
Save data		
Saved Data	53,	72
select		23
Selective		
Settings	53,	79
Settings (2)	53,	81
Source (ext.)	53,	74
Vector	53,	61
W-Registertest	53,	69

MT30 - Index

horizontal21, 23
vertical21, 23
Function keys15
Н
Harmonics53, 65
I
I58
Id58
L
LED17
CHARGE17
P (Power)17
R (Ready)17
Load point74
load74
save74
M
Maintenance
Measurement27
Error Measurement 32, 34, 53, 67, 92, 97
General procedure27
preparations25
Measurement ranges55
Meter constant31, 67, 82
Meter types - Connection39
Single-phase 2-wire meter40
Three-phase 3-wire42, 44
Three-phase 4-wire meter46, 48, 50
Mode22, 56
display22
select23
N
Numeric keypad15
0
ON/OFF button
P
P58

PC	17
Personal protective equipment	10
Personnel	10
Electrician	10
Requirements	10
Phase angle	58, 74
Power	58, 89, 90
Power factor	58, 74
Power register test	38, 70
P-Registertest	38, 53, 70
Print	84
Printer	17, 81
PS	58
Q	
Q	58
R	
ratio	
Reactive power58,	71, 89, 90
Reference meter	14
Register test	37, 38
Reset button	14
Rotating field	58
RS-232	17
S	
3	
Save	
Save data	84
Saved Data	53, 72
SC	17
Scanning head	12, 32
Scanning-head mount	12, 30
Types of scanning head	67
Screen	15
Selecting the language	25, 79
Selective	53, 71
Service	99
Settings	53, 79
Settings (2)	53, 81
Source (ext)	53 74

MT30 – Index

Special characters1	15
Standard25, 6	31
Switching on25, 9	96
Symmetrically7	74
T	
Target readership6,	
Technical data18, 21, 2	22
Temperature5	58
T 58	
THD65, 8	38
Troubleshooting 93, 94, 96, 9) 7
Type plate1	14
U	
Ud5	
UL11	17
UL21	17
UL31	17
UN1	17
Upn5	58
Upp5	58
V	
Vector53, 6	31
Voltage measuring range2	22
display2	22
select2	23
Voltage transformer44, 50, 8	32
W	
Warranty	99
WEEE9	99
W-Registertest37, 53, 6	39
Λ	
λ5	
Σ	
ΣΡ5	
ΣQ	58
ΣS	58
Σλ5	58